– 节点使用均匀(0,t u )分布从连续争用窗口中随机抽取起始时间,其中 t u 是窗口的持续时间。– 起始时间被转换到 TDMA 时间结构上,以避免在动态数据时隙之外传输。– 如果在起始时间之前接收到传入传输,则取消争用并在信道可用时重新启动
是由此动机,引起了人们对新2D半导体进行光催化水分裂的关注。对于完全光催化的水分裂,2D半导体应具有合适的带边缘对准,以满足光催化水分裂的带结构需求,包括带隙大于1.23 eV,并相对于v h + vh + vh +较高的势值(vbm)和最小值(cbm),并导致距离较高(CBM)(CBM)。 v oh - /o 2 = - 5.67 eV)。7 - 10此外,要考虑pH值范围为0到14,2D半导体光催化剂的带隙应大于2.0 eV,以确保光催化水分的还原反应。11 - 14此外,足够大的过电势和强大的可见光光吸收对于确保足够的驱动能量和相对较高的太阳能转化效率也至关重要。基于上述,全面的2D
新兴的宽带隙 (WBG) 半导体有望推动全球产业发展,就如同 50 多年前硅 (Si) 芯片的发明推动了现代计算机时代的到来一样。基于 SiC 和 GaN 的器件正开始变得更加商业化。与同类的基于 Si 的元件相比,这些 WBG 器件更小、更快、更高效,在更严苛的操作条件下也能提供更高的可靠性。此外,在此框架下,一种新型微电子级半导体材料被创造出来,其带隙甚至比之前建立的宽带隙半导体(如 GaN 和 SiC)还要大,因此被称为“超宽带隙”材料。这些材料包括 AlGaN、AlN、金刚石和 BN 氧化物基材料,它们在理论上具有更优越的性能,包括更高的临界击穿场、更高的工作温度和潜在的更高辐射耐受性。这些特性反过来又使得革命性的新器件可用于极端环境成为可能,例如高效功率晶体管(因为巴利加品质因数有所提高)、超高压脉冲功率开关、高效 UV-LED、激光二极管和 RF 电子设备。本期特刊发表了 20 篇论文,重点关注基于宽带隙的器件:设计、制造和应用。三篇论文 [1-3] 涉及未来 5G 应用和其他高速高功率应用的 RF 功率电子设备。其中九篇论文 [4-12] 探讨了宽带隙高功率器件的各种设计。其余论文涵盖了基于宽带隙的各种应用,如用于提高 GaN 基光子发射器光子提取效率的 ZnO 纳米棒 [13]、InGaZnO 薄膜晶体管 [14]、宽带隙 WO3 薄膜 [15]、银纳米环 [16、17] 和 InGaN 激光二极管 [18-20]。特别是在 RF GaN 器件方面,Kuchta 等人 [1] 提出了一种基于 GaN 的功率放大器设计,该设计降低了透射率畸变。Lee 等人 [2] 展示了一种用于 2.5 至 6 GHz 干扰系统的紧凑型 20 W GaN 内部匹配功率放大器,它使用高介电常数基板、单层电容器和分流/串联电阻器实现低 Q 匹配和低频稳定。 Lin 等人 [3] 通过集成厚铜金属化层实现了 Ka 波段 8.2 W/mm 的高输出功率密度。关于 GaN 功率器件,Wu 等人 [4] 研究了一种双 AlGaN 势垒设计以实现增强模式特性。Ma 等人 [5] 介绍了一种使用 GaN 的数字控制 2 kVA 三相分流 APF 系统。Tajalli 等人 [6] 通过进行缓冲分解研究了 GaN-on-Si 外延结构中垂直漏电和击穿的起源。可以确定每个缓冲层与垂直漏电和击穿电压相关的贡献。Sun 等人 [7] 研究了 GaN-on-Si 外延结构中垂直漏电和击穿电压的分布。[7] 提出了一种利用 TCAD 实现常关型 GaN HEMT 的新方法。该概念基于将栅极沟道方向从长水平方向转置为短垂直方向。Mao 等 [8] 在 IGBT 的集电极侧引入了一部分 p-polySi/p-SiC 异质结,以在不牺牲器件其他特性的情况下降低关断损耗。Kim 等 [9] 实现了 SiC 微加热器芯片作为下一代功率模块的新型热评估设备,并评估了其耐热性能。
摘要:随着网络、信息和通信技术的进步,无线体域网 (WBAN) 在医疗和非医疗应用领域越来越受欢迎。实时患者监测应用会在短时间内生成周期性数据。在生命攸关的应用中,数据可能会突发。因此,系统需要一种可靠的节能通信技术,该技术具有有限的延迟。在这种情况下,媒体访问控制标准中的固定时隙分配会导致系统性能低下。本文讨论了实时远程患者监测系统的雾辅助网络中的动态时隙分配方案。雾计算是云计算范式的扩展版本,适用于可靠、延迟敏感的生命攸关应用。此外,为了提高网络性能,提出了一种节能的最小成本父选择算法来路由数据包。动态时隙分配使用模糊逻辑,输入变量为能量比、缓冲比和数据包到达率。动态时隙分配消除了时隙浪费和网络中的过度延迟,并为网络带来了高可靠性和最大通道利用率。与传统 IEEE 相比,所提方案的有效性在数据包传送率、平均端到端延迟和平均能耗方面得到了证明
CO-OPS 海洋系统测试和评估计划促进新技术向运营状态的过渡,从研发社区中选择新开发的传感器或系统,并将其带入监测环境。OSTEP 为使用现有传感器提供了可量化和可辩护的理由,以及选择新系统的方法。该计划建立并维护现场参考设施,并与面临类似挑战的其他机构合作,在非运营现场环境中检查设备。通过 OSTEP,对传感器进行评估,开发质量控制程序并生成维护例程。现场使用的参考系统的质量由严格的可追溯校准和冗余传感器保证。
二维拓扑绝缘子的扭曲双层有可能创建物质的独特量子状态。在这里,我们成功地合成了GE 2 pt(101)上的Germanene扭曲的双层,其扭曲角度为21.8 o,对应于相应的(√7×√7)结构。使用扫描隧道显微镜和光谱法,我们揭示了该构型的结构和电子特性,揭示了MoiréSoded的带隙和明确定义的边缘状态。该带隙在AB/BA堆叠的位点打开,并在AA堆叠的位点关闭,这是扫描隧道显微镜尖端引起的电场所归因的现象。我们的研究进一步揭示了-0.8 eV和+1.04 eV的两个van Hove奇点,导致(8±1)×10 5 m/s的费米速度。我们的紧密结合结果揭示了独特的量子状态,其中可以通过电场调节拓扑特性,从而可能触发两个拓扑相变。
量子发射体(例如离子、原子、 NV 中心或量子点)与谐振器光学模式的强耦合和较长的腔光子寿命对于量子光学在基础研究和实用量子技术的众多应用中至关重要。有望满足这些要求的系统是光纤微腔 [1-4]、离子束蚀刻介质谐振器 [5] 或微组装结构 [6]。发射体和腔光子之间的强耦合可以通过很小的腔体体积和非常短的光学腔来实现。然而,对于许多现实的量子装置,由于技术困难,腔镜不能放置得太近:对于囚禁离子系统,短腔会导致介质镜带电并导致射频离子囚禁场畸变 [7];对于中性原子,由于需要将原子输送到腔内以及需要从光学侧面进入腔体进行冷却和捕获[8,9],短腔长受到限制。因此,用于量子光学装置应用的光学腔需要结合强耦合率和低损耗,同时保持镜子足够远。实现强耦合的一种方法是使腔体处于(近)同心配置中 [10]。这使腔中心的光模场腰部最小化,从而使发射极-光子耦合最大化,但是由于镜子上的模场直径较大,会增加削波损耗,从而限制了由腔协同性所能实现的最大腔性能。增加腔中心场振幅的另一种方法是通过调制镜子轮廓来创建某种干涉图案 [11]。我们假设我们不受球形腔的限制,即我们可以使用例如聚焦离子束铣削或激光烧蚀来创建任意形状的镜子,如第 6 节中更详细讨论的那样。在这里,我们用数字方式探索了腔镜的调制球面轮廓,这些轮廓会产生高度局部化的腔模式,同时保持较低的损耗。通过这种方法,我们发现了一种镜子轮廓的流形,它可以提供比同心腔更低的损耗率,从而实现更高的协同性。与我们之前的工作 [ 11 ] 相比,在这里我们不需要先验地了解我们想要生成的确切模式形状(特别是特定的
引起了人们对不对称的Fabry -Pérot(FP)腔的重新兴趣,也称为Gires -Tournois谐振器。它们由一个光学厚和一个具有光学薄的金属镜来构成,光可以进入结构。这些光学元素以其在共鸣和增强所选波长上的光与肌电相互作用方面的易用性和有效性而闻名。[4,6,7]在FP谐振器中实现动态调谐的一般策略是,通常通过动态可调的材料(例如graphene)替换镜子之间通常位于镜子之间的被动绝缘体,[11-13]相位变化镁,[14]通过电流聚合物[14]通过(15]液晶(LCS)[16-18] [16-18] [16-18] [16-18] [16-18] [16-18][22]几项作品表明,在腔体中掺入的吲哚丁基氧化物的电控阳性促进了光吸收[12,19]的控制及其在中边缘[20]和近膜中的反射阶段。[21]其他研究利用了氧化氧化物[23]和聚合物[24-26],其纳米结构可调节所得的反射颜色。研究人员表明,掺杂危险的氧化锌[27]和氧化铝[28]的光学泵送允许在亚皮秒级方向上进行超快调节腔共振。也可以通过轻压以非惯性方式来实现[29]液体电解质中纳米颗粒的自组装[30]和相可可的元摩擦剂。[31]为了降低制造复杂性,多种响应材料
计算器注意:•在主屏幕屏幕上按4:当前返回您的文档文件。•在主屏幕上按1:创建新文档文件的新事物。•您在程序编辑器应用程序中创建和编辑程序。您从计算器应用程序中运行程序。•使用[菜单]键查看当前应用的选项。•CTRL-B是检查语法和存储菜单的快捷方式,可存储您程序的更改。•CTRL-R是检查语法和存储菜单以存储对您程序的更改并将名称粘贴到计算器应用程序•按[Enter]在计算器应用程序输入行上运行名称的程序。•计算器应用程序“记住”最后一个命令。在程序运行以再次运行程序后按Enter。•通过按[var](变量)键在计算器应用中找到您的程序名称。•使用CTRL-LEFL箭头和CTRL-RIGHT箭头或使用TouchPad指针单击所需的页面选项卡。•CTRL-DOC(+页面)将为您的文档添加一个空白页。•CTRL-Z将撤消您的最后一个动作。•要停止(“断路”)程序按下并按住键,直到收到对话框为止。•CTRL-S是保存整个文档文件的快捷方式。定期执行此操作以保存您的工作。