摘要融合沉积建模(FDM)是一种增材制造(AM),由于其在设计,有效使用材料和负担得起的成本方面,它引起了研究人员和行业的浓厚兴趣。在本文中,主要目的是研究FDM过程参数对挠曲性能的影响以及由聚对苯二甲酸乙二醇乙二醇(PETG)材料制成的最终部分的准确性,由于其强度和易用性,该材料广泛用于3D打印。采用了基于盒子– Behnken设计的响应表面方法(RSM)方法,其中包含三个关键过程参数:填充线距离,壁线计数和构建板温度。对数据的分析表明,所有三个参数都影响了印刷部分的固有特征,包括印刷部分的机械和尺寸特征。构建板温度被确定为最重要的参数,占印刷样品弯曲强度变化的53%,在样品的尺寸准确性方面偏离39.7%,如方差分析(ANOVA)所示。模型的预测值与相应的实验结果之间的比较表明,开发模型的适用性很高。在这项研究中观察到的最大百分比误差为3.4%,维度准确性为7.5%,建立了优化技术的功效。这些结果对于理解过程参数对材料响应的影响很有意义,并提供了一种系统的方法来开发具有改进的机械特性和几何维度的结构增强的PETG部分。
无溶剂合成和加工金属有机骨架 (MOF) 对于将这些材料应用于应用技术至关重要。MOF 薄膜的气相合成特别适合此类应用,但与传统的基于溶液的方法相比具有挑战性。因此,推进和扩大 MOF 薄膜的气相合成势在必行。结晶对苯二甲酸铜 MOF 薄膜通过原子和分子层沉积 (ALD/MLD) 在不同种类的基底上以气相生长。从先驱工作扩展而来,首次清楚地证明了 3D 相的形成,并揭示了该工艺对多种基底的适应性。在 ALD/MLD 工艺的早期阶段观察到定向膜生长,导致表面上取向的 MOF 晶体,当随着 ALD/MLD 循环次数的增加而进行各向同性生长时。值得注意的是,这项研究主要展示了使用具有晶格匹配拓扑的 DMOF-1 单晶作为起始表面,在气相中实现异质外延生长。这种方法为在气相中开发 MOF 超晶格材料提供了一种有吸引力的途径。
本文报道了一种环保的锂对苯二甲酸/聚乳酸 (Li 2 TP/PLA) 复合细丝的开发,该细丝通过熔融沉积成型 (FDM) 进行 3D 打印后可用作锂离子电池的负极。通过在挤出机内直接引入合成的 Li 2 TP 颗粒和 PLA 聚合物粉末,实现了 3D 可打印细丝的无溶剂配方。通过加入平均 M n ∼ 500 的聚乙二醇二甲醚 (PEGDME500) 作为增塑剂,提高了可打印性,而通过引入炭黑 (CB) 则提高了电性能。彻底讨论了热、电、形态、电化学和可打印性特性。通过利用 3D 打印切片软件功能,提出了一种创新方法来改善 3D 打印电极内的液体电解质浸渍。© 2021 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款发布(CC BY,http://creativecommons.org/licenses/ by/4.0/),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当引用。[DOI:10.1149/ 2162-8777/abedd4]
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月28日。 https://doi.org/10.1101/2025.01.28.635239 doi:biorxiv preprint
引言锂离子电池因其出色的能量密度、工作电压、循环寿命和自放电率而成为便携式电子设备的首选。为了提高性能和安全性,开发用于电动/混合动力汽车和储能系统的创新型电池组件至关重要 [1]。目前,大多数商用锂离子电池使用微孔聚烯烃膜作为隔膜,因为它们具有电化学稳定性和机械强度。然而,这些膜具有孔隙率低和电解质润湿性差等局限性,这会对电池的性能产生负面影响。此外,微孔聚烯烃膜在高温下表现出高热收缩率,这引发了安全问题 [2-4]。*通讯作者。电子邮件:m.javaheri@merc.ac.ir
国际继续教育与培训协会(IACET)继续教育部门(CEU)是一个信用单位,等于参加10个小时的参与认可的计划,该计划旨在为具有证书或许可证的专业人士设计,以实践各种职业。
•Purdue模型是为制造行业开发的,以整合企业和控制系统•电网将一代运行/发电。不喜欢油,水或天然气,电力不能在互连水平上存储,这要求操作员对平衡发电和负载至关重要。
将不可生物降解的废弃石油塑料转化为可回收单体的一种可能方法是通过微生物和酶促活动降解塑料。塑料还可以通过这些过程矿化,产生二氧化碳、水和新生物质作为副产品。正如先前的研究 [ 11 - 13 ] 所证明的那样,这种转化可以产生重要的生物产品。微生物在整个生物降解过程中分泌细胞外酶来分解塑料。一旦附着在塑料上,这些酶就会触发水解并在塑料表面产生较短的聚合物中间体。微生物利用这些中间体作为碳源,最终导致二氧化碳的产生。尽管塑料具有合成性质,但近年来已发现许多能够代谢它们的微生物 [ 14 ]。
原子层沉积 (ALD) 是微电子行业广泛采用的先进气相薄膜制造技术,用于晶体管和显示器等应用。25 在 ALD 中,不同的气态/汽化金属和共反应物前体被顺序脉冲输入反应腔,每个前体脉冲之后都进行惰性气体吹扫步骤,以在发生所需的表面反应后去除多余的前体分子。由于这些化学表面反应的自限性,ALD 可提供无针孔、高度均匀且保形的薄膜,并可在原子级厚度控制。用于有机薄膜的 ALD 对应方法也是最近才开发的,这种方法称为分子层沉积 (MLD)。26 MLD 采用纯有机气态/汽化前体。最重要的是,ALD 和 MLD 都是模块化的,这意味着为了沉积高质量的金属有机薄膜,可以结合使用 ALD 和 MLD 前体脉冲。 27,28 这种目前蓬勃发展的混合 ALD/MLD 技术已被用于制造数十种新型金属有机薄膜材料,这些材料表现出的有趣功能特性远远超出了纯无机或有机薄膜所能实现的功能特性。29 例如,ALD/MLD 生长的金属有机薄膜的机械性能通常比 ALD 生长的无机薄膜高出几个数量级,这在柔性电子应用等领域非常重要。30,31
摘要:折纸结构具有轻便、坚硬和可扩展的优点。一些可扩展结构已经在市场上广泛使用,但尽管许多人试图开发一种可在轴向折叠而不会弯曲的聚对苯二甲酸乙二醇酯 (PET) 瓶,但这种瓶子尚未上市。因此,本研究旨在开发一种易于折叠而不会弯曲的 PET 瓶。初始模型由七层组成,其中五层(即不包括盖子和底部)设置为螺旋圆柱体。该模型可以相当容易地折叠而不会弯曲。然而,模型在压缩后会回弹到几乎原来的高度。因此,我们开发了具有两层或三层螺旋层的新型 PET 瓶来解决这个回弹问题。我们的新设计可以将可折叠层插入不可折叠层(例如锥形壳或圆柱壳)中,以抑制压缩后的回弹。此外,我们新设计中可折叠层和不可折叠层之间的凹槽可以进一步有助于捕获可折叠部件。而且,我们的新设计可以实现部分压缩,以在液体部分消耗时降低瓶子的高度。