Abstract 这项国家研究是欧盟 CEF 计划项目 EU EIP 中“促进自动驾驶”工作包的一部分,重点关注自动驾驶的五个高级应用:高速公路自动驾驶仪、指定车道上的自动卡车、混合交通中的自动公交车、机器人出租车以及自动维护和道路施工车辆。报告描述了世界不同地区尤其是欧洲与自动驾驶相关的监管框架和权威策略。该研究估计了 2040 年之前芬兰新车中所检查应用的份额、整个汽车保有量和交通性能。该研究提出了对自动驾驶的规划操作环境(Operational Design Domain,ODD)特征进行分类的提案,并将其应用于选定的应用。该研究还估算了到 2040 年运营环境的实施、维护和使用所造成的成本。此外,还研究了高水平自动驾驶对汽车出行、出行、道路网络、道路特性和道路规划、交通管理、交通安全、平稳性和环境影响以及经济和就业的影响。最后,报告讨论了对道路管理员和当局的角色和责任的影响。该研究基于文献、案头分析、专家访谈和 2018 年举办的两次专家研讨会、该领域的大会和活动以及正在进行的研究结果。联系人 Alina Koskela/Eetu Pilli-Sihvola 报告语言 英语 保密 公开 总页数 137
B.M.S工程学院,印度班加罗尔,印度摘要:本文献评论探讨了人工智能(AI)在无人机技术中的应用,强调了各个部门的重大进步和新兴趋势。 分析了广泛的研究,本评论将AI应用程序分类为关键领域:自主导航,实时数据处理和机器学习驱动的分析。 在军事行动中,AI增强了监视能力和目标识别,而在农业中,配备了AI的无人机优化作物监测和害虫管理。 环境监测应用显示AI在栖息地保护和灾难响应中的作用。 该评论还解决了诸如数据隐私,法规遵从性以及自主决策的道德意义等挑战。 通过综合当前的研究,本研究旨在告知AI在无人机技术中的未来发展和应用,并强调需要跨学科方法克服现有障碍并最大程度地利用潜在利益。 关键字 - 人工智能(AI),无人机技术,自动导航,机器学习,环境监控B.M.S工程学院,印度班加罗尔,印度摘要:本文献评论探讨了人工智能(AI)在无人机技术中的应用,强调了各个部门的重大进步和新兴趋势。分析了广泛的研究,本评论将AI应用程序分类为关键领域:自主导航,实时数据处理和机器学习驱动的分析。在军事行动中,AI增强了监视能力和目标识别,而在农业中,配备了AI的无人机优化作物监测和害虫管理。环境监测应用显示AI在栖息地保护和灾难响应中的作用。该评论还解决了诸如数据隐私,法规遵从性以及自主决策的道德意义等挑战。通过综合当前的研究,本研究旨在告知AI在无人机技术中的未来发展和应用,并强调需要跨学科方法克服现有障碍并最大程度地利用潜在利益。关键字 - 人工智能(AI),无人机技术,自动导航,机器学习,环境监控
对角线期权对时间和动量高度敏感,需要在整个交易过程中定期监督和调整。虽然对角线期权可以持有至到期,但时间价值将会丢失。如果到期时期权处于价内状态,则将自动行使,交易者将对标的资产的新头寸负责。确保您的账户资金充足,并准备好处理行使或分配。交易者通常会在到期前卖出对角线期权以获利或亏损。如果标的价格移动到或超过某个水平,交易者可以使用激活规则工具设置止损或获利订单。探索期权教育中心的文章和视频,了解有关激活规则的更多信息。
1。简介。数百年,甚至数千年来一直是令人着迷的哲学家和科学家的概念。Georg Cantor(1845 - 1918)的工作在无限的数学处理中起着关键作用。cantor的作品是基于一个自然的想法,该想法断言两个(可能是有限的)集合时,只要它们的元素可以与元素彼此对应配对时,它们的大小相同[2]。尽管它很简单,但这个概念具有违反直觉的含义:例如,一组的大小可以与它的适当子集具有相同的大小1;希尔伯特(Hilbert)的大酒店的悖论很好地说明了这一现象,例如[6]。这个简单的概念导致康托尔发展了他的布景理论,这构成了现代数学的基础。a,一开始就引起了争议,直到后来才被广泛接受:
1学生,2教授1-2计算机科学工程,1个Sharnbasva University,Kalaburagi,Karnataka,India摘要:心脏病是全球死亡率的主要原因,需要有效及时诊断。这项研究提出了一种使用先进的机器学习技术和数据驱动的见解来预测心脏病的新方法。该系统设计用于识别心脏病,利用各种机器学习分类器在选定功能上的性能。采用了预测模型,包括决策树(DT),天真贝叶斯(NB),随机森林(RF)和支持向量机(SVM)来识别心脏病。评估这些分类器的有效性,以确定最准确的心脏病检测方法。此外,该系统还为患者提供有关最近医生的信息,从而促进快速获得医疗诊断和治疗。这种综合方法旨在增强对心脏病的早期检测和干预,最终改善患者的结果并减轻医疗保健系统的负担。索引术语 - 心脏病,机器学习,预测,识别,决策树,天真的贝叶斯,随机森林,支持向量机,数据驱动的见解,早期检测,医学诊断,医疗保健系统。
1纳多(Mohammed Premier University)纳多(Nador)的多学科学院,摩洛哥纳多62700,纳多62700; Abderrahim.boutasknit@gmail.com 2农业技术和生物工程中心,研究单元,标记为CNRST(中心Agrobiotech-url-7 CNRST-05),非生物和生物约束团队,Cadi Ayyad University(UCA),MARRAKESH 40000000000000000000000000000000000000000000000000000号,Marrakesh 40000,Morocco; bo.fassih@gmail.com(B.F.); wahbi@ucam.ac.ma(s.w.)3农业食品,生物技术和植物生物库(农业生物)的实验室,生物学系,科学学院,植物生理学和生物技术团队,卡迪·艾雅德大学(UCA),摩洛哥40000,摩洛哥40000,摩洛哥40000的生物学部门,环境和环境部门。科学与技术 - 莫哈梅二世卡萨布兰卡大学,穆罕默德二世,20000年,摩洛哥5环境与健康实验室,生物学系,科学与技术学院,莫莱·伊斯梅尔大学,莫洛伊·伊斯梅尔大学,bp 509,摩洛哥52000,摩洛哥; benlaouaneraja@gmail.com *通信:mohamed.aitelmokhtar@gmail.com(m.a.-e.-m.); a.meddich@uca.ma(a.m.);电话。: +212-671-492-144(M.A.-E.-M。); +212-661-873-158(A.M.)
摘要。我们证明,经典随机变量或随机场的量子分解是一种非常普遍的现象,仅涉及希尔伯特空间的递增过滤和一族使过滤增加 1 的厄米算子。定义这些厄米算子的量子分解的创建、湮灭和保存算子(CAP 算子)满足对换关系,该对换关系概括了通常的量子力学关系。实际上,对换关系有两种类型(I 型和 II 型)。在 I 型对换关系中,对换子由算子值半线性形式给出。当此算子值半线性形式为标量值(恒等式的倍数)时,非相对论自由玻色场的特征为相关对换关系简化为海森堡对换关系。到目前为止,II 类对易关系尚未出现,因为当随机场的概率分布为乘积测度时,它们完全满足。从这个意义上讲,它们编码了有关随机场自相互作用的信息。
I. Santamaria在西班牙桑坦德市的Cantabria大学通信部门(电子邮件:i.santamaria@unican.es)。M. Soleymani与德国Paderborn 33098 Uni-VersitätPaderborn的信号和系统理论小组(电子邮件:moham- mad.soleymani@sst.upb.de)。E. Jorswieck曾与德国Braunschweig 38106 TechnischeUniversitätkraunschweig一起在德国Braunschweig的TechnischeUniversität大学(电子邮件:e.jorswieck@tu-bs.de)。J.Gutiérrez与IHP-Leibniz-InstitutFür创新的Mikroelelektronik,15236 Frankfurt(Oder),德国(电子邮件:teran@ihp- microelectronics.com)。根据Grant PID2019-104958RB-C43(Adele)(Adele),Santamaria I. Santamaria的工作得到了Ciencia EInnovación和AEI部长的支持。Eduard Jorswieck的工作是由联邦教育和研究部(德国BMBF,德国)通过“Souverän计划”所支持的。数字。vernetzt。”联合项目6G-RIC,根据16Kisk020k和16Kisk031的赠款。
实现基于统一的量子量子设备上的非单身转换对于模拟各种物理问题至关重要,包括开放量子系统和亚范围量子量子状态。我们提出了一种基于扩张的算法,用于使用仅使用一个Ancilla量子的概率量子计算模拟非自动操作。我们利用奇异值分解(SVD)将任何通用量子运算符分解为两个单一操作员和对角线非单身操作员的产物,我们证明可以通过对角度扩张的空间中的对角线统一操作员来实施,这可以实现。扩张技术增加了计算中的Qubit数量,因此,我们的算法将扩张空间中所需的操作限制为对角统一操作员,该操作员已知电路分解。我们使用此算法在具有高忠诚度的量子设备上准备随机的亚标准化两级状态。此外,我们介绍了在dephasing通道中的两级开放量子系统的准确非单身动力学和在量子设备上计算的振幅阻尼通道的准确非单身动力学。提出的算法对于可以轻松计算SVD时实施一般的非独立操作是最有用的,在嘈杂的中间规模量子计算时代,大多数运营商就是这种情况。
•τ〜∞⇒H |质子⟩= m |质子⟩,(纯)能量特征态。•Parton模型将质子视为几乎自由颗粒的收集•建议解决此明显悖论的分辨率:量子纠缠(Arxiv.1702.03489,Kharzeev&Levin)•发明:发明:观察到的Parton的降低密度矩阵是粒子数量基础数