结果:我们从小鼠狐猴中得出成纤维细胞系,将其暴露于紫外线照射,并使用XR-SEQ方案分析了整个修复事件的全基因组。小鼠狐猴修复曲线。我们发现两个灵长类动物之间的总体UV敏感性,维修效率和转录耦合修复水平有所不同。尽管如此,对人和小鼠狐猴成纤维细胞的比较分析表明,同源区域的全基因组修复谱是高度相关的,并且对于高表达基因而言,这种相关性更强。在分析中包含了从另一个人类细胞系中得出的附加XR-Seq样品,我们发现两个灵长类动物的成纤维细胞以比两种不同的人类细胞系更相似的模式修复了紫外线诱导的DNA病变。结论:我们的结果表明,小鼠狐猴和人类及可能的灵长类动物共享同源修复机制以及基因组方差分布,尽管其可变修复效率。该结果还强调了整个真核系统发育中各个组织类型的深层同源性。
化石燃料的耗尽以及日益严重的环境问题引起了开发高性能储能设备的极大关注。在各种储能设备中,超级电容器正在成为研究的热点,并且由于它们的巨大优势,包括高功率密度,高电荷/放电率和长期循环寿命,它们弥补了电池和常规电容器之间的不同。1 - 5通常,根据电容器来源:电容器来源:电气双层电容器(EDLCS),伪电容器和混合电容器,可以分为三类。6 - 8在EDLC中,电容源自电极和电解质界面处的纯静电电荷积累。9,电极成为影响性能的重要因素。此外,电极的性能主要取决于电极材料。因此,电极材料的选择是电容器的关键步骤。
是温度内存聚合物(TMP),在加热并超过开关温度T SW时能够执行预定的形状变化。t sw被先前的变形步骤中施加的温度T变形确定。[2]在分子水平上,温度记忆效应由两个结构特征实现。开关域正在固定临时形状,并通过熵弹性驱动恢复。交叉链接定义了其原始状态和恢复状态的永久形状。它们将麦克索变形传递到分子水平。对于后者,基于高熔化的微晶的物理交联特别感兴趣,因为所得的材料是可以重新处理的。用于将TMP用作植入物材料,T SW应在人体可耐受的范围内调节。降解性是一种附加功能。这种多功能材料已与基于可结晶的寡聚(ε-caprolactone)(OCL)的多块共聚物实现,这些单元与疏水和高融化和高融化[3] Oligo(ω-pentadecalactone)(optadecalactone)(Opdl)(OPDL)cegments by urthane Junitane Junitane Jun。[2]这些伴侣可以通过酯的水解降解,从而预期晶体单位的降解比无定形的降解较慢。[4,5]因此,可以推测OCL Crystallites执行形状开关的熔化可以增强降解性。因此,温度记忆和降解功能将与可编程开关温度T SW依次耦合。基于这些考虑,对加速条件下的宏观共溶性酯(PDLCL)测试标本进行了定性评估(图S8,支持信息)。的降解性确实在依赖于T变形和降解温度的情况很大。然而,在所使用的高度酸性条件下,质子的催化活性在所有酯键上可能非常相似,因此,需要较少的严格条件才能理解功能相互关系。基于OPDL片段的水解速率[6]和Poly(ε-2酚)(PCL),[7]可以预期,体内PDLCLS降解的模式是从材料中逐渐浸出OCL块。可以在langmuir单层降解实验中模拟这种效果,其中,在脂肪酶酶的前提下,只有OCL段是浸出的
在本期刊最近发表的一篇文章中,Drukker 等人 1 回顾了人工智能 (AI) 在妇产科超声成像中的作用。作者描述了 AI 算法在标准平面的自动检测和分类等应用中的应用。一个特别的挑战是,训练这些 AI 算法需要大量的超声图像。训练所得算法的方式存在引入偏差的风险。其次,在算法训练和验证的数据群体之外应用算法时会出现一个潜在问题。目前没有足够的证据表明 AI 算法可以从它们训练的群体推广到其他群体。如果 AI 算法无法在不同环境中推广,那么研究结果的普遍采用就会有问题。我们在此描述了在英国环境中开发的 AI 算法,并使用 2016 年英国人群的数据,与 2009 年至 2017 年期间在丹麦两个胎儿医学中心获得的图像相比如何。
摘要:多种恶性肿瘤中均存在关键致癌基因的过度激活和过表达。近年来,超级增强子(SE)对致癌基因的异常激活机制引起了广泛关注。癌细胞中发生的一系列基因组变化(插入、缺失、易位和重排)可能产生新的SE,导致SE驱动的致癌基因过表达。SE由典型的增强子密集地负载介导复合物、转录因子和染色质调节剂组成,驱动与细胞身份和疾病相关的致癌基因的过表达。细胞周期蛋白依赖性蛋白激酶7(CDK7)和溴结构域蛋白4(BRD4)是与SE介导的转录相关的关键介导复合物。临床试验表明,针对SE的新兴小分子抑制剂(CDK7和BRD4抑制剂)对癌症治疗具有显著效果。越来越多的证据表明SE及其相关复合物在各种癌症的发展中起着关键作用。本文讨论了SE的组成、功能和调控及其对致癌转录的贡献。此外,还讨论了针对SE的创新治疗方法、其优缺点以及临床应用中的问题。研究发现,以SE为靶点可用于常规治疗并为癌症患者开辟更多治疗途径。
a 马德拉斯大学,Chepauk,钦奈 600 005,印度 b SRM 大学,泰米尔纳德邦 603203,印度 c 波兰科学院分子和大分子研究中心,波兰 d 麦德林大学,麦德林,哥伦比亚
巴斯马蒂大米因其风味、香气和长粒而闻名于世。全球对它的需求不断增加,尤其是在亚洲。然而,其生产受到田间各种问题的威胁,导致农作物严重损失。其中一个主要问题是水稻白叶枯病菌 (Xoo) 引起的细菌性枯萎病。Xoo 通过激活易感基因(OsSWEET 家族基因)来劫持宿主机制,利用其内源性转录激活因子样效应物 (TALE)。TALE 在 OsSWEET 基因的启动子区具有效应物结合元件 (EBE)。在 Clade III SWEET 基因中发现的六个著名 TALE 中,有四个存在于 OsSWEET14 基因的启动子区。因此,针对 OsSWEET14 的启动子对于产生广谱抗性非常重要。为了设计出对细菌性枯萎病的抗性,我们通过靶向 OsSWEET14 启动子中存在的 4 个 EBE,在超级巴斯马蒂大米中建立了 CRISPR-Cas9 介导的基因组编辑。我们能够获得四个不同的超级巴斯马蒂品系(SB-E1、SB-E2、SB-E3 和 SB-E4),这些品系具有三个 TALE(AvrXa7、PthXo3 和 TalF)的 EBE。然后通过选择一种带有 AvrXa7 的当地分离的毒性 Xoo 菌株并感染超级巴斯马蒂,对编辑品系进行三次重复的抗细菌性枯萎病评估。AvrXa7 EBE 缺失的品系对 Xoo 菌株表现出抗性。因此,证实了编辑的 EBE 具有对 Xoo 菌株中存在的各自 TALE 的抗性。在这项研究中,获得了高达 9% 的编辑效率。我们的研究结果表明,可以利用 CRISPR-Cas9 来使本土品种对细菌性枯萎病产生抗性,以抵抗当地流行的 Xoo 菌株。
卡尔斯巴德实地办事处对超铀放射性废物管理计划的监督评估 2019 年 8 月 26-30 日 修订后的中期报告概述 本次评估是对能源部副部长 2019 年 7 月 9 日备忘录的回应,备忘录指示企业评估办公室 (EA) 对美国能源部 (DOE) 范围内的放射性废物包装和运输程序和做法进行评估。评估活动侧重于用于监督计划的流程,这些计划确保超铀 (TRU) 废物的安全合规特性、包装和运输,以便在废物隔离试验工厂 (WIPP) 进行处置,这些计划在能源部各个站点实施。在提供监督方面,卡尔斯巴德实地办事处 (CBFO) 定期与能源部的 TRU 废物产生场接触。提供这种接触的两种正式方式是通过指导和指导进行发电机场技术审查 (GSTR) 和年度认证/重新认证审核。 GSTR 检查场地放射性废物管理计划和认证计划流程,这些流程管理从原始 TRU 废物产生到认证包装装运的所有 TRU 废物操作。认证审计评估已在 DOE 场地实施的 TRU 废物认证计划,以确定它们是否已准备好开始运行以表征、包装和运输 TRU 废物。此次评估检查了劳伦斯利弗莫尔国家实验室 (LLNL) 卡尔斯巴德现场办事处 (CBFO) 质量保证办公室执行的废物认证审计,因为 CBFO 评估了 LLNL 是否已准备好开始将 TRU 废物运送到 WIPP。附录 A 中列出的 EA 评估小组采访了执行审计和评估活动的 CBFO 人员和签约支持人员;在 LLNL 现场抽样认证审计活动;并评估了多个计划文件,包括程序、备忘录、审计和审查报告(包括 LLNL GSTR)和问题管理系统输入。此外,此次评估还审查了过去针对将 TRU 废物运往 WIPP 的其他一些场址的 GSTR 和认证审计报告,这些场址包括阿贡国家实验室、爱达荷州清理项目、洛斯阿拉莫斯国家实验室和萨凡纳河场址,以及针对这些场址各自认证计划实施的程序和流程。本报告取代了我们于 2020 年 2 月发布的原始报告《卡尔斯巴德外地办事处对超铀放射性废物管理计划的监督评估》。在我们发布原始报告后,我们注意到一些信息改变了我们对报告的缺陷的判断,该缺陷涉及实施评估吸收过程引入的氧化化学物质的指导。在对信息进行进一步分析后,我们确定该问题不是缺陷。因此,我们已消除该缺陷并重新发布报告。在企业范围评估结束时,最终汇编报告将包括此摘要的结果。随着后续场地评估中获得更多的信息,进行此评估所获得的观点可能会发生变化。最终汇编报告将确定最佳实践、经验教训和跨领域建议。能源部命令 227.1A《独立监督计划》描述和管理能源部独立监督计划,能源部通过一套全面的内部协议、操作实践、评估指南和流程指南来实施该计划。能源部命令 227.1A 定义了最佳实践、发现、缺陷、改进机会和建议等术语。根据能源部命令 227.1A 和 226.1B《能源部监督政策的实施》,预计场地将分析本摘要中发现的发现和缺陷的原因,制定纠正措施
不同预处理步骤在估计静息状态 fMRI 数据中的图论测度时的可靠性。神经科学前沿 9,48,http://dx.doi.org/10.3389/fnins.2015.00048 。Baas, D., Aleman, A., Kahn, RS, 2004.杏仁核激活的侧化:功能性神经影像学研究的系统综述。脑研究评论 45 (2),96–103,http://dx.doi.org/10.1016/j.brainresrev.2004.02.004 。 Baeken, C., Marinazzo, D., Van Schuerbeek, P., Wu, G.-R., De Mey, J., Luypaert, R., De Raedt, R., 2014. 左右杏仁核——内侧额叶皮质功能连接受伤害规避的不同调节。PLoS One 9 (4)。Beckmann, C., Jenkinson, M., Smith, SM, 2003. 针对
n 2013 年 11 月 6 日,海燕(当地称为 Yolanda)成为许多人所说的有记录以来登陆的最强风暴。1 据美国国家海洋和大气管理局称,海燕风速高达每小时 200 英里,阵风高达每小时 225 英里。海燕影响了菲律宾 17 个地区中的 9 个。美国军方救援行动共计提供了超过 8600 万美元的援助,包括 13400 多名军事人员、66 架飞机和 12 艘海军舰艇,运送了超过 2495 吨救援物资并疏散了超过 21000 人。为支持救援工作,已完成 1300 多次飞行,向大约 450 个地点运送了货物和服务。2 截至 2014 年 7 月,美国国际开发署 (USAID) 估计共有 1600 万人受到海燕的影响。3