量子力学系统的希尔伯特空间可以具有非平凡几何,这一认识导致人们在单粒子和多粒子量子系统中发现了大量新奇现象。特别是,与单粒子波函数相关的几何考虑导致了非相互作用拓扑绝缘体 (TI) 的最初发现和最终分类 [1 – 4] ,以及对这些相中缺陷相关特性的研究 [5 – 8] 。另一方面,在分数量子霍尔系统 (FQHS) [9,10] 和分数陈绝缘体 (FCI) [11,12] 的框架内,研究了拓扑与占据非平凡单粒子态的粒子间相互作用之间相互作用所产生的迷人物理。然而,由于后者的关联性质,建立单粒子和多粒子层面上非平凡几何的作用之间的直接关系一直很困难。在本文中,我们展示了二维 (2D) 单粒子能带结构的非平凡几何与相关 Bardeen-Cooper-Schrieffer (BCS) 超导体的响应特性之间的明确联系 [13] 。特别地,我们表明,在用大质量狄拉克模型描述正常态的二维系统中,超导态遵循修改的通量量子化条件,从而产生分数通量涡旋以及非常规约瑟夫森响应。必须强调的是,超导态与正常态没有扰动关系。但是,正如我们在下面所展示的,使用 BCS 变分假设可以处理相变两侧的几何作用。流形量子化源于这样一个事实:在块体超导体内部深处,序参量的整体相位是恒定的。在传统的
为了实现这一潜力,需要一个剧烈的研究,发展和演示计划。这样的计划应包括:基础研究中的扩大努力,包括理论;高温薄膜材料和高温复合线和导体的密集开发;除了追求两种关键支持技术:低温和高强度结构材料以及基于超导体材料的许多工程测试模型的开发,以作为早期对高温超导体早期转移到军事系统的基础。
PWCR23000049 致瑞昱半导体股份有限公司董事会及股东 前言 我们已审阅瑞昱半导体股份有限公司及其子公司截至2023年3月31日及2022年3月31日的合并资产负债表、截至该日止三个月的合并损益表、股东权益变动表及现金流量表以及合并财务报表附注,包括重要会计政策摘要。 本公司管理层有责任按照金融监督管理委员会核准生效的《证券发行人财务报告编制准则》及国际会计准则第34号《中期财务报告》的规定,编制并公允列报此等合并财务报表。 我们的责任是在审阅基础上对这些合并财务报表发表结论。审阅范围 除下段所述外,本会乃根据中华民国《审阅业务准则第2410号——企业独立核数师审阅财务资料》进行审阅。审阅合并财务报表包括询问(主要询问财务及会计事宜负责人)及应用分析及其他审阅程序。审阅范围远小于审计,因此本会无法保证知悉审计中可能发现的所有重大事项。因此,本会不发表审计意见。 保留结论之依据 如附注4(3)及6(7)所述,若干不重大合并子公司、按权益法核算的投资之合并财务报表及附注13所披露之资料仅以该等子公司及被投资公司编制之报告为准,而该等报告并未经独立核数师审阅。该等子公司总资产分别为新台币 6,258,112 仟元及新台币 5,860,231 仟元,占本公司 102 年度及 102 年度合并总资产的 5.82%及 5.40%,总负债分别为新台币 846,101 仟元及新台币 996,120 仟元,占本公司合并总负债的 1.42%及 1.61%。
对离子在半导体中产生的电离径迹的产生和传输进行 TCAD 模拟与可靠性以及辐射探测器的设计息息相关。具体而言,可靠性应用侧重于模拟在测试半导体元件是否易受软错误(逻辑器件、存储器,例如 [1] )和单粒子烧毁(功率器件,例如 [2] )影响时发生的瞬态现象。主要的 TCAD 工具已经包含模型和程序(例如 [3] ),但它们存在一些实际限制,例如仅限于单一类型的离子、有效能量范围的限制以及仅适用于硅的校准。此外,现有模型在数值上比较僵化,不易针对其他类型的离子、半导体和能量范围进行校准。本文提出了一个基于物理导向的 Crystal-Ball 函数 [4] 的半导体中低能离子沉积电荷的统一模型。特别关注能量范围分别为 0 – 10 MeV 和 0 – 160 MeV 的 α 粒子和质子。与常用模型相比,这种选择具有几个优势。特别是,α 粒子和质子使用相同的建模函数。此外,与现有解决方案相比,所提出的模型使用的校准参数更少,数值条件良好,并且其校准参数更透明,因为它们与可测量的物理量相关。最后,所提出的模型可以轻松扩展到不同的半导体和离子类型。
人工智能将影响我们生活的各个方面。它在半导体制造中也发挥着越来越重要的作用。今年 5 月,在比利时安特卫普举行的由 imec 主办的 ITF World 大会上,NVIDIA 总裁、首席执行官兼董事会成员黄仁勋介绍了 NVIDIA 如何与台积电、ASML、应用材料 (AMAT)、D2S、IMS Nano Fabri- cation 和新思科技等公司合作,将人工智能引入芯片制造。黄仁勋表示:“第一波人工智能专注于计算机视觉和语音识别,已经实现了超越人类的能力,并在机器人、自动驾驶汽车和制造业开辟了数万亿美元的商机。先进的芯片制造需要一千多个步骤,要生产出生物分子大小的特征。要制造具有数千万亿个特征的芯片,每个步骤都必须近乎完美才能产生任何输出。每个阶段都会执行复杂的计算科学,以计算要图案化的特征并进行缺陷检测以进行在线工艺控制。芯片制造是 NVIDIA 加速计算和 AI 的理想应用。”黄仁勋表示,D2S 和 IMS Nano Fabrication 使用电子束构建掩模写入器,以在掩模上创建光刻胶图案。“Nvidia GPU 进行图案渲染和掩模工艺校正,”他说。台积电和 KLA 使用 EUV 和 DUV 照明进行掩模检查。“NVIDIA GPU 处理经典物理建模,
我们研究了一种在原子薄的半导体中诱导超导性的机制,激子介导电子之间的有效吸引力。我们的模型包括超出声子介导的超导性范式的相互作用效应,并连接到玻色和费米极性的良好限制。通过考虑TRIONS的强耦合物理,我们发现有效的电子相互作用会形成强频率和动量依赖性,并伴随着经历了新兴的BCS-BEC交叉的系统,从弱绑定的S-波库珀对Bipolarons的超浮雕。即使在强耦合时,双丙酸也相对较轻,从而导致临界温度占费米温度的10%。这使二维材料的异质结构有望在通过电子掺杂和Trion结合能设置的高临界温度下实现超导性。
应加快塑料封装 IC 进入军事系统,但不应盲目推广。测试数据显示,在大多数情况下,塑料封装 IC 与陶瓷 IC 一样可靠。然而,人们对于长期储存寿命和极端温度和湿度环境的担忧是合理的。不同供应商的塑料封装微电路 (PEM) 故障率差异很大。显然,它们可以很容易地用于许多非关键、相对无害的军事应用。在另一个极端,IC 必须在极端温度和湿度条件和周期下运行,或者在长期储存(长达 20 年)后保证运行非常重要(导弹和其他武器),军事供应商不愿意放弃经过验证的陶瓷封装可靠性。
免责声明:这些材料包括所有者出售专利的要约。他们不打算,也不应将其解释为要约或专利许可的请求。该信息仅是为了协助潜在买家对投资组合的独立评估。本文档中的任何内容均不得构成或解释为有关专利或其他知识产权范围的法律分析。关于专利组合使用或潜在使用的任何讨论仅用于说明目的。在就此机会做出决定时,潜在的购买者必须依靠自己的考试和评估专利和投资组合,包括涉及的优点和风险。没有提供或暗示有关专利或投资组合的任何陈述或保证。这些材料以及与专利或投资组合有关的任何其他文件或信息旨在仅供接收方使用,仅供其用于参与销售过程以及确定是否购买专利或投资组合。卖方保留随时修改或停止销售过程的权利,包括在尽职调查期完成之前接受要约。本文提供的信息或根据销售过程交换的信息无意注意或指控出售的任何专利或投资组合的侵权,也不应作为未来批准的通知证明或知识的证明,即潜在地侵犯任何专利或投资组合的潜在侵犯,以提供任何专利或投资组合。