森林流域中野火的频率和严重程度的增加有可能显着影响从这些生态系统中导出的可萃取有机物(WEOM)的数量和质量。这项研究检查了实验室加热土壤中WEOM的光学特性,以了解由于加热而在有机物中发生的物理化学变化,并测试了光学参数在评估中的有用性。WEOM吸光度和荧光光谱形状和强度随着土壤加热温度的函数而系统变化。值得注意的是,吸光度和荧光强度,特定的紫外线吸光度,明显的荧光量子产率,特定的荧光发射强度以及最大的荧光发射波长与加热温度表现出一致的变化,并且表明在加热土壤中的WEOM在分子量和芳香的样品中较低。加热土壤中的较低分子量通过尺寸排斥色谱测量来证实。这项工作增加了野火对WEOM发生的分子变化的理解,并表明光学测量(即吸光度和荧光)可用于水分监测火后自动生成有机物。
光反射在许多现代技术中起着至关重要的作用。本文给出了由单一材料制成的通用平面结构在任何方向和任何偏振下的最大反射功率的解析表达式,该结构由复杂的标量磁化率表示。最大化反射的最佳光物质相互作用问题被表述为感应电流优化问题的解,受能量守恒和被动性约束,通过使用拉格朗日对偶,该问题允许全局上限。导出的上限适用于广泛的平面结构,包括超表面、光栅、均质膜、光子晶体板,更一般地说,适用于任何非均匀平面结构,无论其几何细节如何。这些界限还设定了给定有损材料的最小可能厚度的限制,以实现所需的反射率。此外,我们的结果允许发现与现有设计相比,反射结构效率可以大幅提高的参数区域。给出了这些发现对设计由真实的、不完美(即有损)材料制成的优质紧凑反射元件的影响的例子,例如超薄高效的光栅、偏振转换器和用于太阳/激光帆的轻型镜子。
a.在今天的视频中,我将向您展示如何从 Otter Ai 应用程序下载笔记和音频。b.首先,您将从“我的对话”中选择要下载的录音。c. 可以通过点击左上角的三行找到“我的对话”,它将是下拉菜单中的第二个选项。d. 打开录音后,选择屏幕右上角的三个点。e. 在显示的下拉菜单中,您将选择“导出”按钮。f. 选择要导出的文件类型。如果要导出音频,请点击 audio;如果要导出文本,请点击 TXT。g.在 TXT 中,您可以选择笔记的外观。如果您想更改发言人的姓名、时间戳,或者想要合并同一个发言人。您可以在此处进行所有更改。h. 查看笔记后,选择“确认”。 i.确认后,您将选择下载的笔记或音频将在手机上保存的位置。或者您也可以将其保存在您的 Google Drive 或您正在使用的任何类型的驱动器上。在这种情况下,我将把它保存到我的驱动器中。
摘要。地球表面和大气之间的微量气体交换对大气成分有重大影响。空气涡流协方差可以量化局部到区域尺度(1-1000 公里)的地表通量,可能有助于弥合自上而下和自下而上的通量估计之间的差距,并为生物物理和生物地球化学过程提供新的见解。美国宇航局碳空气通量实验 (CARAFE) 利用美国宇航局 C-23 Sherpa 飞机和一套商用和定制仪器,以高空间分辨率获取二氧化碳、甲烷、显热和潜热的通量。本文介绍了 CARAFE 有效载荷的关键组件,包括气象、温室气体、水蒸气和地表成像系统。连续小波变换沿飞机飞行轨迹提供空间分辨的通量。深入讨论了通量分析方法,特别强调了不确定性的量化。导出的表面通量中典型的不确定性为 40-90%(标称分辨率为 2 公里)或 16-35%(全程平均,通常为 30-40 公里)。CARAFE 已于 2016 年和 2017 年在美国东部成功执行了两次任务,量化了森林、农田、湿地和水域的通量。这些活动的初步结果被呈现出来,以突出该系统的性能。
摘要。地球表面和大气之间的微量气体交换对大气成分有重大影响。空气涡流协方差可以量化局部到区域尺度(1-1000 公里)的表面通量,可能有助于弥合自上而下和自下而上的通量估计之间的差距,并为生物物理和生物地球化学过程提供新的见解。美国宇航局碳空气通量实验 (CARAFE) 利用美国宇航局 C-23 Sherpa 飞机和一套商用和定制仪器,以高空间分辨率获取二氧化碳、甲烷、显热和潜热的通量。本文介绍了 CARAFE 有效载荷的关键组件,包括气象、温室气体、水蒸气和表面成像系统。连续小波变换沿飞机飞行轨迹提供空间分辨的通量。深入讨论了通量分析方法,特别强调了不确定性的量化。 导出的表面通量中典型的不确定性为 40-90%(标称分辨率为 2 公里)或 16-35%(全程平均,通常为 30-40 公里)。 CARAFE 已于 2016 年和 2017 年在美国东部成功执行了两次任务,量化了森林、农田、湿地和水域的通量。 这些活动的初步结果被呈现出来,以突出该系统的性能。
我们引入了一种新方法,可以分析确定两个不同空间位置的量子场配置之间的纠缠熵(和相关量),量子场要么是自由的,要么与经典源相互作用。我们展示了如何用二分连续高斯系统描述这种设置。这使我们能够仅根据场的傅里叶空间功率谱推导出纠缠熵、互信息和量子不和谐的明确和精确公式。这与以前的研究形成了鲜明对比,以前的研究主要依赖于数值考虑。为了说明这一点,我们将我们的形式化应用于平坦空间中的无质量场,其中导出的精确表达式仅涉及场粗粒度区域的大小与这些区域之间的距离之比。特别是,我们恢复了一个众所周知的事实,即互信息在远距离处以该比率的四次方衰减,正如之前在数值研究中观察到的那样。我们的方法导致了这个结果的第一次分析推导,以及一个也适用于任意距离的精确公式。最后,我们确定了量子不和谐并发现它完全消失了(除非在涂抹球体上进行粗粒化,在这种情况下它遵循与互信息相同的远距离抑制)。
所有收集和地理位置的数据都在Web应用程序中可视化,尤其是通过不同的编程语言开发的地理查看器(例如php,HTML 5,CSS),在地质项目期间,允许以交互式三维图形格式的所有多参数和解释数据的整合。该软件可自定义,具有多种工具和功能,还可以在提取“绿色”能量的过程中显示储层的动态模拟,以更有效,更可持续地使用资源[4]。该软件是一种工具,旨在改善地热源的评估和可持续使用,但是由于其多功能性,它也可以通过显示动态3D物理过程的动态3D组件(水流,热量,热变量,盐分等)来用于其他地下研究目的。云技术允许多个用户同时使用该软件,而无需安装,确保兼容,可用性和更新。Geogrid查看器及其用户友好的接口适应了不同的显示器,它具有创新性,因为:1)它可以快速加载预处理的三维地理数据,并在标准或矢量格式中导出的交互式3D模型; 2)它提供了通过唯一的颜色尺度可视化特定复杂查询的多参数数据的可能性,以获得对各种数据集的解释的集成和连贯的视图。
摘要:随着纳米级半导体器件尺寸的不断缩小,从复杂的物理方程中获取表面势的解析解变得越来越困难,而这正是 MOSFET 紧凑模型的根本目的。在本文中,我们提出了一个通用框架,利用深度神经网络的通用近似能力,自动推导 MOSFET 表面势的解析解。我们的框架结合了物理关系神经网络 (PRNN),可以从通用数值模拟器并行学习处理复杂的数学物理方程,然后将模拟数据中的“知识”灌输到神经网络,从而生成器件参数和表面势之间的精确闭式映射。本质上,表面势能够反映二维 (2D) 泊松方程的数值解,超越了传统一维泊松方程解的限制,从而更好地说明缩放器件的物理特性。我们在推导 MOSFET 的解析表面电位以及将导出的电位函数应用于 130 nm MOSFET 紧凑模型的构建和电路模拟方面取得了令人鼓舞的结果。这种高效框架能够准确预测器件性能,展现了其在器件优化和电路设计方面的潜力。
逻辑系统与模型系摘要:本文讨论了量子力学实际上解决的问题。其观点表明,在理解问题时忽略了时间及其过程的关键环节。量子力学历史的常见解释认为离散性仅在普朗克尺度上,而在宏观尺度上则转变为连续性甚至平滑性。这种方法充满了一系列看似悖论的悖论。它表明,量子力学的当前数学形式主义仅与其表面上已知的问题部分相关。本文接受的恰恰相反:数学解决方案是绝对相关的,并作为公理基础,从中推导出真实但隐藏的问题。波粒二象性、希尔伯特空间、量子力学的概率和多世界解释、量子信息和薛定谔方程都包括在该基础中。薛定谔方程被理解为能量守恒定律对过去、现在和未来时刻的推广。由此推导出的量子力学的现实问题是:“描述任何物理变化(包括任何机械运动)中时间进程的普遍规律是什么?” 关键词:能量守恒定律;希尔伯特空间;量子力学的多世界诠释;过去、现在和未来;量子力学的概率诠释;量子信息;薛定谔方程;时间;波粒二象性
我们给出了一种新型的随机矩阵普适性的精确结果,这种普适性是无限温度下量子多体系统可以表现出的。具体来说,我们考虑一个纯态集合,该集合由一个小的子系统支撑,该子系统是通过对系统其余部分进行局部投影测量而生成的。我们严格地证明了,从一类经历淬火动力学的量子混沌系统推导出的集合接近于一种完全独立于系统细节的普适形式:它在希尔伯特空间中均匀分布。这超越了量子热化的标准范式,该范式规定子系统放松为一个量子态集合,该集合再现了热混合状态下局部可观测量的期望值。我们的结果更普遍地意味着量子态本身的分布与均匀随机态的分布变得难以区分,即集合形成了量子信息论术语中的量子态设计。我们的工作建立了量子多体物理学、量子信息和随机矩阵理论之间的桥梁,表明伪随机态可以从孤立的量子动力学中产生,为设计量子态断层扫描和基准测试的应用开辟了新方法。