智能复合材料 (SC) 用于执行器和能量收集器等机电系统。通常,薄壁部件(例如梁、板和壳)被用作结构元件,以实现这些复合材料所需的机械行为。SC 表现出各种高级特性,从压电和压磁等低阶现象到挠电和挠磁等高阶效应。最近在智能复合材料中发现的挠磁现象是在有限条件下进行研究的。对现有文献的回顾表明,当存在挠磁效应 (FM) 时,缺乏对 SC 的三维 (3D) 弹性分析的评估。为了解决这个问题,控制方程将包含项 ∂ / ∂ z ,其中 z 表示厚度坐标。变分技术将指导我们进一步开发这些控制方程。我们将利用各种假设和理论,如3D梁模型、von K'arm'an应变非线性、Hamilton原理以及成熟的正、逆FM模型,推导出厚复合梁的本构方程。进行3D分析意味着应变和应变梯度张量必须以3D形式表示。加入项∂/∂z需要构建不同的模型。值得注意的是,目前的商用有限元代码无法准确、充分地处理微米和纳米级固体,因此使用这些程序来模拟挠磁复合结构是不切实际的。因此,我们将推导出的特征线性三维弯曲方程转换为3D半解析多项式域以获得数值结果。这项研究证明了进行三维力学分析对于探索智能结构中多种物理现象的耦合效应的重要性。
摘要 在工业应用中,具有精确几何公差的高精度旋转轴通常在齿轮和壳体之间以微米级间隙安装。在大多数这些应用中,动态循环载荷是不可避免的,这会对关键部件的疲劳寿命产生不利影响。在加工过程中确保严格的尺寸公差和同轴度是非常可取的,因为它会影响许多应用中的旋转特性。因此,同轴度误差的控制在旋转轴和高精度机床中起着至关重要的作用。然而,使用高精度加工会大大增加制造成本。因此,一种能够潜在地减少同轴度误差的经济高效的加工工艺具有很高的工业重要性。本研究通过优化参数(切削速度、进给率、切削深度和切削刀具刀尖半径)尝试实现圆柱形加工零件的最小同轴度误差。计划进行实验,即中心复合设计矩阵和统计分析通过应用响应面法确定机器参数对高强度 Al 7075 合金同轴度误差的影响。进给率和切削深度因素对同轴度误差有显著影响。所有加工参数对同轴度误差均表现出非线性影响,这定义了强相互作用因素的影响。通过确定一组加工参数,即应用 Big-Bang 和 Big Crunch 以及 Rao(Rao-1、Rao-2 和 Rao-3)算法,使用推导出的经验方程来最小化同轴度误差。Rao 算法在计算量和解决方案精度方面均优于 Big-Bang 和 Big Crunch 算法。Rao 算法的结果经过实验验证,同轴度误差降低至 1.013 µm,与 CCD 实验相比提高了 72.6%。
摘要 在工业应用中,具有精确几何公差的高精度旋转轴通常以微米级的间隙安装在齿轮和壳体之间。在大多数此类应用中,动态循环载荷是不可避免的,这会对关键部件的疲劳寿命产生不利影响。在加工过程中确保严格的尺寸公差和同轴度是非常必要的,因为它会影响许多应用中的旋转特性。因此,同轴度误差的控制在旋转轴和高精度机床中起着至关重要的作用。然而,使用高精度加工会大大增加制造成本。因此,一种能够潜在地降低同轴度误差的经济高效的加工工艺具有很高的工业重要性。本研究试图通过优化参数(切削速度、进给速度、切削深度和切削刀尖半径)来实现圆柱形加工零件的最小同轴度误差。计划进行以下实验:中心复合设计矩阵和统计分析应用响应面法确定了机器参数对高强度 Al 7075 合金同轴度误差的影响。进给速度和切削深度因素对同轴度误差有显著影响。所有加工参数对同轴度误差均表现出非线性影响,这定义了强相互作用因素的影响。通过确定一组加工参数,即应用 Big-Bang 和 Big Crunch 和 Rao(Rao-1、Rao-2 和 Rao-3)算法,利用推导出的经验方程来最小化同轴度误差。Rao 算法在计算工作量和求解精度方面均优于 Big-Bang 和 Big Crunch 算法。通过实验验证了 Rao 算法的结果,同轴度误差降低了 1.013 µm,与 CCD 实验相比提高了 72.6%。
摘要 在工业应用中,具有精确几何公差的高精度旋转轴通常以微米级的间隙安装在齿轮和壳体之间。在大多数此类应用中,动态循环载荷是不可避免的,这会对关键部件的疲劳寿命产生不利影响。在加工过程中确保严格的尺寸公差和同轴度是非常必要的,因为它会影响许多应用中的旋转特性。因此,同轴度误差的控制在旋转轴和高精度机床中起着至关重要的作用。然而,使用高精度加工会大大增加制造成本。因此,一种能够潜在地降低同轴度误差的经济高效的加工工艺具有很高的工业重要性。本研究试图通过优化参数(切削速度、进给速度、切削深度和切削刀尖半径)来实现圆柱形加工零件的最小同轴度误差。计划进行以下实验:中心复合设计矩阵和统计分析应用响应面法确定了机器参数对高强度 Al 7075 合金同轴度误差的影响。进给速度和切削深度因素对同轴度误差有显著影响。所有加工参数对同轴度误差均表现出非线性影响,这定义了强相互作用因素的影响。通过确定一组加工参数,即应用 Big-Bang 和 Big Crunch 和 Rao(Rao-1、Rao-2 和 Rao-3)算法,利用推导出的经验方程来最小化同轴度误差。Rao 算法在计算工作量和求解精度方面均优于 Big-Bang 和 Big Crunch 算法。通过实验验证了 Rao 算法的结果,同轴度误差降低了 1.013 µm,与 CCD 实验相比提高了 72.6%。
量子场论 (QFT) 起源于 20 世纪 40 和 50 年代为基本粒子定义相对论量子力学理论的尝试。如今,这个术语用于描述从基本粒子到凝聚态物理等各种物理现象的计算框架,该框架基于路径积分,即广义函数空间上的测度。此类测度的数学构造和分析也称为建设性 QFT。本工作联合会将首先介绍一些背景材料,然后探讨近年来基于随机偏微分方程 (SPDE) 视角的一些进展,对于这些方程,QFT 测度是平稳测度。物理学家 Parisi 和 Wu [PW81] 首次观察到 QFT 和 SPDE 之间的联系,这种联系被称为随机量化。从随机量化程序中导出的这些 SPDE 的解理论和解的性质的研究促进了奇异 SPDE 解理论的实质性进展,尤其是过去十年中规则结构理论 [Hai14b] 和准受控分布理论 [GIP15] 的发明。此外,随机量化使我们能够引入更多工具(包括 PDE 和随机分析)来研究 QFT。本 Arbeitsgemeinschaft 的重点将以 QFT 模型(例如 Φ 4 和 Yang-Mills 模型)为例,讨论随机量化和 SPDE 方法及其在这些模型中的应用。其他模型(例如费米子模型、sine-Gordon 和指数相互作用)也将在一定程度上得到讨论。我们将介绍正则结构和准受控分布的核心思想、结果和应用,以及与这些模型相对应的 SPDE 的局部解和全局解的构造,并使用 PDE 方法研究这些 QFT 的一些定性行为,以及与相应的格点或统计物理模型的联系。我们还将讨论 QFT 的一些其他主题,例如威尔逊重正化群、对数索伯列夫不等式及其含义,以及这些主题与 SPDE 之间的各种联系。
摘要 在工业应用中,具有精确几何公差的高精度旋转轴通常以微米级的间隙安装在齿轮和壳体之间。在大多数此类应用中,动态循环载荷是不可避免的,这会对关键部件的疲劳寿命产生不利影响。在加工过程中确保严格的尺寸公差和同轴度是非常必要的,因为它会影响许多应用中的旋转特性。因此,同轴度误差的控制在旋转轴和高精度机床中起着至关重要的作用。然而,使用高精度加工会大大增加制造成本。因此,一种能够潜在地降低同轴度误差的经济高效的加工工艺具有很高的工业重要性。本研究试图通过优化参数(切削速度、进给速度、切削深度和切削刀尖半径)来实现圆柱形加工零件的最小同轴度误差。计划进行以下实验:中心复合设计矩阵和统计分析应用响应面法确定了机器参数对高强度 Al 7075 合金同轴度误差的影响。进给速度和切削深度因素对同轴度误差有显著影响。所有加工参数对同轴度误差均表现出非线性影响,这定义了强相互作用因素的影响。通过确定一组加工参数,即应用 Big-Bang 和 Big Crunch 和 Rao(Rao-1、Rao-2 和 Rao-3)算法,利用推导出的经验方程来最小化同轴度误差。Rao 算法在计算工作量和求解精度方面均优于 Big-Bang 和 Big Crunch 算法。通过实验验证了 Rao 算法的结果,同轴度误差降低了 1.013 µm,与 CCD 实验相比提高了 72.6%。
摘要 在工业应用中,具有精确几何公差的高精度旋转轴通常以微米级的间隙安装在齿轮和壳体之间。在大多数此类应用中,动态循环载荷是不可避免的,这会对关键部件的疲劳寿命产生不利影响。在加工过程中确保严格的尺寸公差和同轴度是非常必要的,因为它会影响许多应用中的旋转特性。因此,同轴度误差的控制在旋转轴和高精度机床中起着至关重要的作用。然而,使用高精度加工会大大增加制造成本。因此,一种能够潜在地降低同轴度误差的经济高效的加工工艺具有很高的工业重要性。本研究试图通过优化参数(切削速度、进给速度、切削深度和切削刀尖半径)来实现圆柱形加工零件的最小同轴度误差。计划进行以下实验:中心复合设计矩阵和统计分析应用响应面法确定了机器参数对高强度 Al 7075 合金同轴度误差的影响。进给速度和切削深度因素对同轴度误差有显著影响。所有加工参数对同轴度误差均表现出非线性影响,这定义了强相互作用因素的影响。通过确定一组加工参数,即应用 Big-Bang 和 Big Crunch 和 Rao(Rao-1、Rao-2 和 Rao-3)算法,利用推导出的经验方程来最小化同轴度误差。Rao 算法在计算工作量和求解精度方面均优于 Big-Bang 和 Big Crunch 算法。通过实验验证了 Rao 算法的结果,同轴度误差降低了 1.013 µm,与 CCD 实验相比提高了 72.6%。
线边缘粗糙度 (LER) 的测量最近已成为光刻计量学界和整个半导体行业关注的话题。高级计量咨询小组 (AMAG) 是一个由国际 SEMATECH (ISMT) 联盟成员公司和美国国家标准与技术研究所 (NIST) 的首席计量学家组成的委员会,该委员会正在开展一项研究 LER 指标并指导关键尺寸扫描电子显微镜 (CD-SEM) 供应商社区采用半导体行业支持的标准化解决方案。2003 年国际半导体技术路线图 (ITRS) 为粗糙度提供了新的定义。ITRS 设想了边缘和宽度粗糙度的均方根测量。还有其他可能的指标,其中一些将在此处进行调查。ITRS 设想将均方根测量限制在粗糙度波长范围内,并且测量重复性优于指定的公差。本研究解决了满足这些规范所需的测量选择。推导出必须测量的线长和沿该长度测量位置间距的表达式。结果表明,图像中的噪声会产生粗糙度测量误差,这些误差既有随机成分,也有非随机成分(即偏差)。在特殊测试图案中报告了对紫外线抗蚀剂和多晶硅的测量结果,这些材料的粗糙度是典型的。这些测量结果表明,粗糙度测量对噪声的敏感度主要取决于边缘检测算法的选择和聚焦的质量。当使用基于模型或 S 形拟合算法并且图像聚焦良好时,测量对噪声的敏感度较低。使用测得的紫外线抗蚀剂线的粗糙度特性并应用 90 nm 技术节点的 ITRS 要求,推导出的采样长度和采样间隔表达式意味着必须以 7.5 nm 或更短的间隔测量至少为节点 8 倍的线长(即 720 nm)。
(例如[aws22a,aws22b,akv22,gk22]),它被委托用于存储关键材料的材料必须在硬件故障的情况下将其安全导出以备份。这些备份必须使用另一个设备的公钥加密(或“包装”),以便绝不会在安全硬件之外暴露出明文键[YC22,PK15]。该设备的管理员负责创建备份,无法确保备份已良好,并且将在新设备上成功导入。她可以尝试进口操作,但这可能很昂贵(例如,如果备份设备在单独的设施中)或风险(因为它将钥匙散布到更多的范围内)。在基于云的HSM的情况下,后一种风险很好地说明了,在该情况下,通过将钥匙导入辅助云提供商来测试备份可以大大扩展信任边界。即使导入操作成功,管理员仍应测试导入的私钥对应于预期的公共密钥,该密钥通常需要使用它来创建测试签名或解密。这是不可取的两个原因:它添加了必须登录的键的额外用途,并且它也可能涉及与其创建的目的不同的目的。理想情况下,导出设备可以向管理员证明,密文是接收设备的公钥下的合理的加密,此外,此外,该设备是与特定公共密钥相对应的私钥,例如,该设备声称“我对ECDSA签名密钥进行了加密X的访问,而不应访问ecdsa prefific y”,而不应访问y”,而y nondeft yondeft yondeft yondeft yon and Indrocteact y = g g g g g x x x x y = g x x x y = g x.如果导出的密钥是对称密钥,则该设备应证明授权是与对密钥的承诺或使用密钥创建的Ciphertext或Mac一致的键。可验证的加密是解决此问题的自然解决方案。
案例 ID 框大小 R λ ˙ E [cu] k max η K η K [cu] IL 11 /η KL /L 11 N p [#] DNS 1.1 512 74 0.4 3 0.015 0.01 41.2 161 10000 DNS 1.2 512 74 0.4 3 0.015 0.05 41.4 160 10000 DNS 1.3 512 74 0.4 3 0.015 0.10 41.3 160 10000 DNS 1.4 512 74 0.4 3 0.015 0.24 41.3 21 10000 DNS 1.5 512 74 0.4 3 0.015 0.50 41.4 16 10000 DNS 2.0 1024 142 0.4 3 0.007 0.11 99.0 332.8 1000 DNS 2.1 1024 219 0.4 3 0.007 0.01 147.8 15.6 1000 DNS 2.2 1024 217 0.4 3 0.007 0.06 147.6 15.7 1000 DNS 2.3 1024 216 0.4 3 0.007 0.11 147.9 15.6 1000 DNS 2.4 1024 212 0.4 3 0.007 0.27 146.8 15.7 1000 DNS 2.5 1024 207 0.4 3 0.007 0.53 145.5 15.8 1000 DNS 3.1 2048 302 0.5 3 0.003 0.01 260.9 13.6 1000 DNS 3.2 2048 299 0.5 3 0.003 0.05 258.2 13.8 1000 DNS 3.3 2048 295 0.5 3 0.003 0.11 254.8 14.0 1000 DNS 3.4 2048 314 0.5 3 0.004 0.26 275.6 20.2 1000 域名3.5 2048 321 0.5 3 0.004 0.53 282.9 14.7 1000 表 2. 每个 DNS 的参数概览。R λ 为泰勒尺度雷诺数,˙ E 为代码单位(cu)中的能量注入率,k max 为最大解析波数,η K 为柯尔莫哥洛夫长度尺度,I = σ u ′ 1 /U 为湍流强度,L 11 为由 E ( κ ) 导出的纵向积分长度尺度,L 为平均探针轨道距离,N p 为虚拟探针的数量。湍流强度 I 通过设置探针平均速度来控制,其中 σ u ′ 1 ≈ 1 为均方根纵向速度波动。