ANTIETAM 配备了 ANISPY-1A 相控阵雷达、宙斯盾作战系统和发射 SM-2 Blk II 导弹的 Mk 41 垂直发射系统,是海军首屈一指的防空战 (AAW) 平台。结合宙斯盾显示系统的四个大屏幕显示器、大量通信系统、自动状态板和十七个 NTDS 控制台,所有这些都由宙斯盾作战系统协调,指挥和控制功能首屈一指,能够为任何战斗群作战指挥官提供支持。为支持这一卓越的防空战能力,ANTIETAM 配备了 ANISQS-53A 声纳、最先进的 ANISQR-19 拖曳阵列声纳和 LAMPS Mk 111 直升机。这使她拥有无与伦比的远距离和短距离反潜战能力。两门 5 英寸/54 火炮搭配高精度 Mk 86 火炮火控系统,可提供强大的反水面威胁。最后,战斧和鱼叉武器系统的组合使这支部队具备了与“超视距”敌人作战的能力。
ANTIETAM 配备了 AN/SPY-1A 相控阵雷达、AEGIS 作战系统和发射 SM-2 Blk I1 导弹的 MK41 垂直发射系统,是海军首屈一指的防空作战 (AAW) 平台。这些系统与 AEGIS 显示系统、包括 JTIDS Link 16、自动状态板和 17 个 NTDS 控制台在内的大量通信系统相结合,使其指挥和控制能力在支持战斗群作战指挥官方面首屈一指。ANTIETAM 还配备了 AN/SQS-53A 声纳、AN/SQR-19 拖曳阵列声纳和 LAMPS Mk I11 直升机,使其具有无与伦比的远程和短程反潜战 (ASW) 能力。两门 511 54 口径 MK 45 火炮由 MK 86 火炮火控系统制导,提供强大的海军火炮火力支援能力,并增强了鱼叉武器系统在反水面战 (ASUW) 中的作用。最后,战斧武器系统提供打击战能力,使 ANTIETAM 能够以致命的精度在水平线上打击陆地和海上目标。
5 其中包括:以其他方式操作舰船,使他人难以发现和准确跟踪海军舰船;干扰或摧毁敌方目标传感器;干扰从传感器到武器发射器的目标数据传输;攻击导弹发射器(可以是陆基发射器、舰船、潜艇或飞机);以及对抗向海军舰船飞来的导弹和无人机。海军对抗向海军舰船飞来的导弹和无人机的措施包括:干扰导弹或无人机的传感器或制导系统;使用各种诱饵将敌方导弹引离海军舰船;以及使用地对空导弹和密集阵近防武器系统 (CIWS)(本质上是一种雷达控制的加特林机枪)击落敌方导弹和无人机。采取所有这些措施反映了海军长期以来建立多层防御敌方导弹的方法,并从多个点攻击敌人的“杀伤链”,以增加打破杀伤链的机会。(杀伤链是敌人必须完成的步骤序列,才能成功对海军舰艇进行导弹袭击。干扰序列中的任何步骤都可以打破杀伤链,从而阻止或击败攻击。)
不利的成本交换比是指海军采购用于击落无人机或反舰导弹的 SAM 所花费的成本可能比对手建造或获取无人机或反舰导弹的成本更高(可能高得多)。海军防空导弹的采购成本从每枚导弹几十万美元到几百万美元不等,具体取决于类型。在与拥有有限数量无人机或反舰导弹的对手作战时,不利的成本交换比是可以接受的,因为它可以挽救海军水兵的生命并防止海军舰艇遭受非常昂贵的损坏。但在战斗场景中(或正在进行的军事能力竞争),面对拥有大量无人机和反舰导弹并有能力建造或获取更多无人机和反舰导弹的国家,不利的成本交换率可能会成为一种非常昂贵且可能无法承受的保护海军水面舰艇免受无人机和反舰导弹攻击的方法,尤其是在美国国防开支受限且有限的美国国防资金存在竞争需求的情况下。
PATRIOT(相控阵跟踪拦截目标)系统在开始时没有使用任何 PEM,因为高运行率和备件及导弹的长期储存需要较高的平均故障间隔时间 (MTBF)。增长计划和采购精简(即成本)要求“重新审视”PEM 的使用。目前的低运行率允许将 PEM 整合到地面设备中,但由于长时间处于休眠状态且运行时间短,因此无法整合到导弹中。目前,PATRIOT 系统部署在从炎热潮湿到凉爽潮湿的各种环境中。由于 PATRIOT 系统使用外部空气来冷却设备,因此 PEM 会“呼吸”而 HSM 不会“呼吸”这一事实对于操作和存储环境来说是一个问题,尤其是因为缺乏普通、干包装和氮气存储的 PEM 以及组件上的保形涂层 PEM 的存储数据。随着我们进入 21 世纪,可以预见 PEM 的使用将会增加,届时性能要求而不是技术数据包 (TDP) 将决定最终项目。
晶体管技术于 1947 年在贝尔实验室发明,并于 1948 年 6 月公开发布,注定要成为早期太空飞行的基本支持组件。晶体管的关键性能特征包括极低功耗、坚固耐用、重量轻和使用寿命长,与太空飞行要求非常匹配,并支持了整个 20 世纪 50 年代至 70 年代航天器和导弹技术的快速发展。这种非凡技术组合的一个历史性例子是 1958 年 1 月成功发射了第一颗美国卫星“探险者 1 号”,它仅使用晶体管电子设备(没有真空管),并且表现超出预期,测量了辐射水平并返回了由此产生的科学数据,这为发现范艾伦辐射带奠定了基础。晶体管博物馆很高兴开设这个新部分,重点介绍晶体管技术对早期航天器和导弹的历史贡献。我们很快就会扩展此部分,所以请经常回来查看。
1 本文的精简版发表于 Steve Fetter、George N. Lewis 和 Lisbeth Gronlund 的《为什么飞毛腿导弹伤亡如此之少?》《自然》杂志,1993 年 1 月 28 日,第 293-296 页。本文中的一些数字与《自然》杂志中的数字不同,这是因为我们在精简版完成后又收到了其他信息。在《自然》杂志中,我们根据新闻媒体报道估计,有 10 到 11 枚飞毛腿导弹弹头在以色列大都市地区引爆。根据 Reuven Pedatzur 最近在以色列进行的采访,我们现在能够确定共有 13 枚飞毛腿导弹弹头在以色列大都市地区引爆;此外,我们现在能够绘制弹着点地图。我们现在还掌握了一些有关飞毛腿导弹哑弹头和坠入以色列地面的爱国者导弹的其他信息。最后,《自然》杂志上报道的向以色列发射的飞毛腿导弹数量为 38 枚;由于美国陆军现在似乎使用 39 这个数字,因此这里也使用了这个数字(另外一枚飞毛腿导弹发射于 1 月 18 日)。
S-125(北约代号 SA-3 GOA)由俄罗斯金刚石研究与制造协会设计,是一种两级固体燃料低空至中空地对空导弹系统,旨在保护非常重要的政府、工业和军事设施免受所有类型的空中威胁,如轰炸机、战斗轰炸机、多用途飞机和巡航导弹的威胁,这些威胁在极低空和中空飞行。最先进的版本之一于 1964 年首次投入使用,代号为 S-125M NEVA,其针对出口市场的变体代号为 S-125 PECHORA。 S-125 于 1969 年开始交付华沙条约组织国家,次年开始部署到苏联集团以外国家的武装部队,其中包括阿富汗、安哥拉、阿尔及利亚、越南、埃及、也门、印度、伊拉克、韩国、古巴、利比亚、马里、莫桑比克、秘鲁、叙利亚、坦桑尼亚、芬兰和埃塞俄比亚。俄罗斯目前正在推广 S-125 升级包,以达到 S-125-2 PECHORA-2 标准。S-125 地对空导弹系统经过多次升级和改进。该系统包括地对空导弹发射套件、地对空制导导弹 5V24/27 和支持设施。
最近有关美国核武器的辩论质疑射程较短、当量较低的武器在应对欧洲和亚洲新出现的威胁方面能发挥什么作用。这些武器通常被称为非战略核武器,过去美俄军备控制协议并未对其进行限制。一些分析人士认为,这种限制是有价值的,特别是在应对俄罗斯拥有更多此类武器的情况下。另一些人则认为,美国应该扩大这些武器在欧洲和亚洲的部署,以应对在核阴影下发动战争的新风险。特朗普政府在 2018 年 2 月发布的《核态势评估》中回答了这些问题,并确定美国应该采购两种新型核武器:一种用于潜射弹道导弹的新型低当量弹头和一种新型海射巡航导弹。拜登政府进行核姿势审查时可能会重新考虑这些武器,该武器可能在2022年初发布。
1.自1994年上一份国防白皮书发布以来,世界发生了深刻变化,特别是在全球化的影响下。作为国家和国际安全的数据,信息传播、货物交换和人员流动的速度极大加快,正在积极和消极地改变我们的经济、社会和政治环境。权力等级正在发生变化并将继续发展。世界不一定更危险,但它变得更不稳定、更不可预测。相互关联的危机,特别是从中东到巴基斯坦的危机的新可能性正在出现。法国和欧洲处于更直接的脆弱境地:自称圣战主义的恐怖主义明确针对它们;到2025年,它们的领土将处于新大国开发的弹道导弹的射程之内;新的风险已经出现,有的有意为之,如计算机攻击,有的为无意,如健康或生态危机,并因生物圈的退化而加剧。白皮书对未来十五年进行了战略分析,并得出了制定新的国防和安全政策的后果。
