2基于TGD的超导性模型6 2.1基于TGD模型的简要摘要。。。。。。。。。。。。。。。。。。。。。。。。。。6 2.1.1 TGD框架中超导性的一般机制。。。。。。。。6 2.1.2高t C SC和Bio-SC的定量模型。。。。。。。。。。。。。。。。。7 2.2集体阶段的TGD对应物,新型磁场和Berry的阶段8 2.2.1 Beltrami流量作为非疾病流动的时空相关。。。。。。。。8 2.2.2所有保守的电流都可以定义可集成的流吗?。。。。。。。。。。。。。10 2.2.3一些示例。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.2.4 Khler的M 4部分是否形成问题?。。。。。。。。。。。。。11 2.3连贯的状态和费米数编号保护的问题。。。。。。。。11 2.3.1琼脂化需要有效的1+1维。。。。。。。。。。。。。。12 2.3.2与照球体相关的KAC-MOODY对称性。。。。。。。。。。。13 2.3.3琼脂化需要Beltrami属性。。。。。。。。。。。。。。。。。。。。14 2.3.4为什么库珀对的形成是形成h eff> h黑暗相位的?。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 2.4有效的哈密顿官的一般形式。。。。。。。。。。。。。。。。。。。。。14 2.5从BCS理论开始,更精确地表达了基于TGD的理论。。15 2.5.1临界温度作为磁性弹力管的Hagedorn温度。。。15 2.5.2基于差距能量的解释。。。。。。。。。。。。。。。。。。16 2.5.3单子频磁场和h eff的值是多少?。。17 2.5.4基于Josephson效果的基于TGD的模型。。。。。。。。。。。。。。。。。。。。。19
材料发现中的一个关键挑战是找到高温超导体。氢和氢化物材料长期以来一直被认为是有希望的材料,这些材料表现出传统的语音介导的超导性。但是,稳定这些材料所需的高压力限制了它们的应用。在这里,我们提出了高通量计算的结果,考虑到在环境压力下从周期表之间穿过二种高对称性三元氢化物。然后通过在直接估计超导临界温度之前考虑热力学,动态和磁性稳定性来减少这个较大的组成空间。这种方法揭示了一个可稳定的环境压力氢化物超导体Mg 2 IRH 6,预测的临界温度为160 K,可与最高温度超导底漆相当。我们通过与结构相关的绝缘子Mg 2 IRH 7提出了一条合成途径,该途径在15 GPA以上是热力学稳定的,并讨论这样做的潜在挑战。
摘要 - 高增益和量子限制噪声的放大是一个困难的问题。使用具有高动力学电感的超导传输线的参数放大不仅是解决此问题的一种有前途的技术,而且还增加了一些好处。与其他技术相比,它们具有改善功率饱和度,实现较大的分数带宽并以较高频率运行的潜力。在这种类型的放大器中,选择适当的传输线是其设计中的关键元素。鉴于当前的制造局限性,传统的线路(例如Coplanar WaveGuides(CPW))并不理想,因为很难使它们具有适当的特征阻抗,以使其具有良好的匹配和足够慢的相位速度,以使其更加紧凑。电容载荷线,也称为人造线,是解决此问题的良好解决方案。但是,很少提出设计规则或模型来指导其准确的设计。考虑到它们通常是以Floquet线的形式制造的,这一事实更加重要,必须仔细设计以抑制参数过程中出现的不希望的谐波。在本文中,我们首先提出了一种新的建模策略,基于电磁仿真软件的使用,其次是一种促进和加快CPW人造线和由其制成的Floquet线的设计的第一原理模型。然后,我们与实验结果进行了比较,以证明其准确性。最后,理论模型允许人们预测人造线的高频行为,表明它们是实现100 GHz以上参数放大器的良好候选者。
作者:Kazumi Fukushima,Keito Obata,Soichiro Yamane,Yajian Hu,Yongkai Li,Yugui Yao,Zhiwei Wang,
在压力下,新发现的LA 3 Ni 2 O 7中新发现的高温超导性吸引了很多关注。表征电子特性的基本要素是双层NiO 2平面,该平面是通过中间氧原子的3 d Z 2轨道的层间键合结合的。在强耦合极限中,低能物理学由内征抗磁性自旋交换相互作用j K在3 d x 2-y 2轨道之间的j k和3 d z 2轨道之间的层间j k之间描述。考虑到每个站点上的规则并整合了3 d Z 2自由度的自由度,该系统将基于3 d x 2 -2 -y 2轨道的单轨道双层t -j模型还原为单轨道双层T -J模型。通过采用奴隶玻色子方法,求解了键合和配对阶参数的自动一致方程。在物理相关的1 4填充方案附近(掺杂δ¼0。3〜0。5),层间耦合j⊥将常规的单层D-波超导状态调整为S波。强的J⊥可以增强层间超导顺序,从而导致t c急剧增加。有趣的是,可能存在一个有限的制度,在这种制度中,出现了sÞID状态。
版权所有 © 2024 Hartung。这是一篇开放获取的文章,根据知识共享署名许可 (CC BY) 条款分发。允许在其他论坛使用、分发或复制,只要注明原作者和版权所有者并引用本期刊的原始出版物,符合公认的学术惯例。禁止不符合这些条款的使用、分发或复制。缩写:人工智能 (AI),计算机程序(机器学习工具),执行通常需要人类智能的任务;流失是指候选药物在临床开发过程中经历的高失败率。有偏见的结果报告,发表有效果比没有效果更容易:这是科学文献中偏见的一个典型例子;重磅炸弹药物是一种药品,为销售它的公司创造每年 10 亿美元或以上的销售额;药物靶点 ,它本质上是人体内与药物相互作用产生治疗效果的分子; 欧洲化妆品试验禁令 ,欧盟自 2003 年起立法禁止动物试验,并通过营销禁令强制执行,适用于成品化妆品、含有接受替代品的动物测试成分的产品(2004 年后)、急性和局部(眼睛和皮肤)测试(2009 年后)以及所有其他危害(2013 年后); 仿制药 ,仿制药是一种在剂型、安全性、强度、给药途径、质量、性能特征和预期用途上与已经上市的品牌药相同的药物; 危害 ,物质的不良影响; 高通量筛选 (HTS) ,一种用于科学发现的方法,特别是在药物发现、生物学、材料科学和化学领域。它涉及使用自动化设备快速测试数千到数百万个样本的生物活性或化学反应;免疫抑制药物,用于阻止移植排斥或自身免疫性疾病的药物;先导化合物优化,即对筛选出的初始命中化合物的化学变体进行迭代合成和测试的过程,以提高效力、选择性和类药特性,并开发优化的先导分子作为临床开发的强有力最终候选物;LD50,即半数致死量,是一种通过50%的大鼠死亡的剂量来比较物质毒性潜力的方法;纳米粒子,定义为直径在1至100纳米(nm)范围内的物质粒子;由于它们的表面积与体积比高,它们可以表现出与块体材料明显不同的物理和化学特性;组学技术,同时测量尽可能多的活性基因(转录组学)、蛋白质(蛋白质组学)或代谢物(代谢组学)的变化;REACH计划,《化学品注册、评估、授权和限制》的首字母缩写,是欧盟的一项综合性法规,旨在确保高水平地保护人类健康和环境免受化学品带来的风险。该法规于 2007 年 6 月 1 日颁布;可重复性危机,也称为复制危机,指的是人们越来越担心许多科学研究的结果难以或无法复制;选择性分析,又称亚组分析,侧重于部分数据,而忽略整体结果,以获得显著结果。这是不可重复结果的常见来源;致畸作用,导致出生缺陷。
在电气方面发现了超导性,其中部分电子位于晶格间隙中,标记为间质阴离子电子(IAES),引入了一个不同类别,称为电气超级电源。了解IAE在电子音波耦合(EPC)中的作用对于电气超导体的发展至关重要。在这项研究中,我们证明了IAES的净电荷增加可增强12 li 8 H N(n = 4-7)电气的EPC,表现出立方/四方对称性和不同的IAES拓扑。第一原理计算显示EPC常数与IAE的净电荷几乎线性上升。这种增加源于IAES对LI 2 P电子的激发效应及其在库珀对形成中的协作参与,这是由Li衍生的低/中频声子促进的。在PM -3 m Li 8 H 4中明显说明了这种机制,其T C为40.3 K,其中Li原子表现出压缩和拉伸振动,诱导IAES二聚化和最强的局部EPC相互作用。相反,Li 8 H N电气中的氢原子主要调节IAE的净电荷和拓扑。我们的发现对电气超导体的发展具有显着意义。
摘要 第二代高温超导 (HTS) 带材已广泛用作储能材料,例如超导磁能存储 (SMES) 设备。为了增强载流特性,这些系统通常在接近涂层导体的临界电流下运行;因此,可能会产生热点,这可能导致超导体淬火。为了防止热点的出现并减少故障量,本文努力提高正常区域传播速度 (NZPV)。超导体和稳定层之间的界面电阻已被证明是产生大量 NZPV 的关键,在故障情况下,界面电阻可以充当电流分流器。通过在超导层和稳定层之间添加高阻层,磁带的结构略有修改,其中各种界面电阻已用于预测 10 厘米长度的 HTS 磁带之间的温度分布。使用 COMSOL 创建了 2D 数值模型来评估 2G 超导磁带的 NZPV 和温度分布。已经得出结论,通过使用相当大的界面电阻来防止超导磁带失超,可以实现更大的 NZPV。关键词:HTS 磁带,正常区域传播速度,界面电阻,失超,HTS 电缆,SFCL,SMES。1.简介 涂层导体广泛应用于电力应用,因为它们能够承载巨大的电流,同时在临界电流附近有效运行。涂层导体已在几乎所有电力应用中取代了铜导体,包括电缆、电动机、发电机、变压器、MRI、NMR、故障电流限制器和 SMES 系统,因为它们在管理电流方面更高效,占用的空间比传统设备更少。当故障电流限制和储能设备在临界电流附近运行时,可能会形成热斑,导致超导体失超。如今,HTS 电缆的发展也受到关注,载流电缆的设计负载系数更大(接近临界电流),以最大限度地提高其载流能力。然而,过大的电流会因发热而导致不平衡,而冷却不足会导致热点,最终导致胶带热失超。这个话题尚未解决,许多研究小组正在
最常见的钨andα-W同质量在约11 mk的温度下具有超导过渡。然而,据报道,当合成为薄膜时,温度范围内具有超导的过渡,在温度范围内t c〜2-5 k:晶体β-W和无定形W(A -W)。在这项工作中,我们对使用DC磁控溅射,运输,低频磁屏蔽响应和透射电子显微镜进行了系统研究。我们的结果表明,虽然A -W确实是常规的超导体,但β-W并不是一个超过2.3 K的超导体。在推定的β -W fif中,具有T c> 3 k的超导能力可能起源于在β-W相下形成的无定形相。我们的发现调和了β -W中报道的一些异常,例如非常小的超导间隙和随着纤维厚度的增加而减少T c。