摘要。对跨纳米界界面的光诱导电荷电流的精确和超快控制可能导致在能量收集,超快电子和连贯的Terahertz来源中的重要应用。最近的研究表明,几种相对论机制,包括逆旋转效应,逆Rashba - Edelstein效应和逆旋转轨道扭转效应,可以将纵向注入的自旋极化电流从磁性材料转化为横向电荷电流,从而使Terahertz Generation均可使用这些电流。但是,这些机制通常需要外部磁场,并且在自旋极化速率和相对论自旋转换的效率方面表现出局限性。我们提出了一种非递归和非磁性机制,该机制直接利用界面上的光激发高密度电荷电流。我们证明了导电氧化物RUO 2和IRO 2的电动各向异性可以有效地将电荷电流偏向横向,从而导致有效和宽带Terahertz辐射。重要的是,与以前的方法相比,这种机制具有更高的转化效率,因为具有较大电动各向异性的导电材料很容易获得,而进一步提高重金属材料的旋转台角度将具有挑战性。我们的发现提供了令人兴奋的可能性,可直接利用这些光激发的高密度电流,用于超快电子和Terahertz光谱。
摘要:由于电子电路易于集成在 3D 表面上,三维印刷电子产品的发展引起了人们的极大兴趣。然而,要实现用于在可热成型基材上印刷的导电糊剂所需的贴合性、可拉伸性和附着力仍然非常具有挑战性。在本研究中,我们建议使用由涂有银的铜片组成的新型可热成型油墨,这使我们能够防止铜的氧化,而不是常用的银油墨。研究了各种聚合物/溶剂/薄片系统,从而产生了可在空气中烧结的可热成型导电印刷组合物。将最佳油墨丝网印刷在 PC 基材上,并使用具有不同应变程度的模具进行热成型。研究了各种成分对热成型能力以及所得 3D 结构的电性能和形态的影响。最佳油墨在 20% 热成型前后分别产生低薄层电阻率,分别为 100 m Ω / □ /mil 和 500 m Ω / □ /mil。证明了使用最佳油墨在 PC 基板上制造可热成型 3D RFID 天线的可行性。
. 吸湿性:在 30°C/85%RH 下通过 >1 年,适用于 MSL1 封装 环氧环:未固化 2 小时扩散 <50um,在 150°C 下固化 1 小时扩散 <75um 应用范围:军事、医疗、光电子、汽车传感器等的理想选择 多功能兼容性:将 IC 和组件粘合到陶瓷、PBGA、CSP、LCP 和阵列封装上 稳定性:疏水性且在高温下稳定 卓越的粘合强度:与各种有机和金属表面的界面粘合 可靠性:可承受高温测试、老化和热冲击(-75°C 至 +175°C) 电气性能:低电阻率、TC >8W/mK 和最小的排气
•用高功率电子光束生产放射性同位素•诊断和治疗同位素•Niowave同位素计划•商业SRF ACCELERATOR技术•SRF腔和冷冻模块•液体氦冰箱•微波化•微波化•微波化功率•高电动型电源型型型iSOP线•ISOP LINS型•ISOP范围•ISOP型•ISOP型设计•
简介神经形态计算是指试图模仿大脑信号处理的信号的方式[1]。与基于具有两个分离的内存和处理单元并以顺序操作的von Neumann架构的传统计算机相比[2],大脑过程以并行方式[3,4]。,它在速度和能源效率方面提供了巨大的好处,因为数据传输是造成大部分功耗的原因。克服某些局限性的方法之一是开发可以改善信号处理的新算法[5,6],但是,它仍然需要在内存和处理器之间进行数据传输和限制其效率。在处理这些限制的过程中,在网络中可以实施的人工神经元和突触的开发中,付出了很多努力[1]。基于光子学,即,神经形态光子学,可用光子作为信号载体,以在网络的不同部分之间传递信息[7-12]。多亏了几乎无限的带宽,与标准CMOS技术的兼容性以及几乎为零的功耗,可以进行基本的矩阵乘法,与神经态电子相比,它可以提供巨大的改进。可以通过以光速度在单个波导上将多个信号列入多个信号来实现完整的并行性。同时,光权重可以提供计算的低延迟。通过将这些优点结合起来,至少与电子同行相比,至少有很少的数量级改善。但是,实现此类任务的实现需要仍缺失的新材料平台和低损失体系结构。氮化硅(SIN)是光子整合电路(PIC)技术的普遍材料,因为它与标准CMOS过程兼容[13,14]。它允许在单个芯片上进行具有成本效益的设备和电子和光子组件的协整。此外,与其他材料相比,基于SIN平台的光子设备的特征是对温度漂移的容忍度更高,光学损耗和较低的波长范围操作,较大的波长透明度和改善的串扰值[14]。已经被证明是一个适当的材料平台,用于实现神经网络,表明自由度增加的是设计线性神经元[8,9]。因此,SIN平台可以作为神经形态光子学中的路由层起关键作用[9]。
1集合3 sp。Z O.O.,Wolczynska 133,01-919 Warsaw,波兰2电气和计算机工程系,约翰·霍普金斯大学,马里兰州马里兰州21218,美国对应作者: * * jeckug10@yahoo.com.com.com.com.com.com.sg摘要的远离人工效果,可以用作巨大的远方机器,以供镜头,以便一个新的镜头机器,可以使用一个镜头的机器,一个镜头的机构神经网络。他们可以克服电子处理元件的现有速度和功率限制,并为光子学提供其他好处,例如高频带宽度,次纳秒潜伏期和低能互连凭证,从而导致新的称为Neuromorphic Photonics的新范式。意识到这项任务的主要障碍是缺乏适当的材料平台,该平台对网络的体系结构施加了严重的要求。在这里,我们建议并证明透明的导电氧化物可以成为这项任务的绝佳候选者,因为它们在光学和电输入下都提供了非线性和双重性。
†为了了解Al 2 O 3纳米纤维的分布,已经对具有10 wt%Al 2 O 3纳米纤维的聚合物凝胶电解质进行了SEM-EDX分析,图S1。我们观察到Al 2 O 3纳米纤维的均匀分布。对于3 wt%Al 2 O 3,不太可能有聚合。另一方面,我们发现离子的扩散率在较高浓度的Al 2 O 3纳米纤维下降低。,即使较高的Al 2 O 3纳米纤维大大改善了GPE的介电常数,它们的剩余比也可能阻止离子传导的传输路径。因此,在这里,我们仅专注于3 wt%Al 2 O 3纳米纤维的GPE。
a 苏州大学能源与材料创新研究院,江苏省先进碳材料与可穿戴能源技术重点实验室,苏州大学能源学院功能纳米与软材料研究所,苏州 215006,中国 b 麻省理工学院媒体实验室,马萨诸塞州剑桥 02139,美国 c 苏州大学江苏省先进负碳技术重点实验室,苏州 215123,中国 d 中国科学院纳米科学卓越创新中心,北京市微纳能源与传感重点实验室,中国科学院北京纳米能源与纳米系统研究所,北京 100083,中国 e 佐治亚理工学院材料科学与工程学院,佐治亚州亚特兰大 30318,美国 f 香港理工大学智能可穿戴系统研究所,香港九龙红磡 999077,中国
JM Martinis、MH Devoret 等人。 PRB 35,4682 (1987)。 RF Voss和RA Webb(IBM),PRL 47,265(1981); DB Schwarz 等人(纽约州立大学),PRL 55,1547(1985)。
自1955年以来,Swift Textile Metalizing为航空航天,国防和商业应用提供了标准和定制的导电织物。STM汇集了技术,创新工程和客户参与,以提供动态的应用程序解决方案。STM的目标是通过产品性能和服务的最高标准不断提高我们的行业领导力。STM的目标是通过产品性能和服务的最高标准不断提高我们的行业领导力。