Sample SE T /dB SE R /dB SE A /dB SE A /SE R /% SSE t /(dB·(cm −2 ·g) −1 ) M3-MX-0 5.0 0.9 4.0 4.3 87.6 M3-MX-5 6.8 1.5 5.3 3.5 147.5 M3-MX-10 7.2 1.7 5.5 3.2 171.0 M3-MX-15 7.0 1.7 5.3 3.0一直m3-ag@mx-15 69.0 10.3 58.7 5.7 2 356.6 m3-ag@mx-20 68.2 10.3 57.8 5.6 2 719.8 m3-ag@mx-25 67.9 10.0 57.0 57.9 5.8 2 439.4 2 439.4
图 2:a) 还显示了 0-3 at.% W 掺杂 SnO 2 薄膜的 XRD 图案以及锡石相中 SnO 2 的计算图案。b) (211) 峰的放大图,显示在 SnO 2 中 W 替换后没有明显的偏移。c) 导电性最强的薄膜 (1.5 at.% 掺杂 W: SnO 2 ) 的 La Bail 拟合。d) SnO 2 薄膜中不同 W 浓度下纹理系数的变化,其中纹理系数值高于 1 表示该平面优先生长。
许多软机器人组件需要高度可拉伸的导电材料才能正常运行。这些导电材料通常用作传感器或热响应材料的加热器。然而,可拉伸材料很少,它们可以承受软机器人通常经历的高应变,同时保持焦耳加热所需的电气特性(例如,均匀的电导率)。在这项工作中,我们提出了一种含有液体和固体夹杂物的硅树脂复合材料,它可以在经历 200% 的线性应变时保持均匀的电导率。这种复合材料可以铸造成薄片,使其能够包裹在热响应软材料周围,这些软材料在加热时会增加体积或可拉伸性。我们展示了这种材料如何为电控形状变化的软机器人致动器以及仅由电刺激驱动的全硅树脂致动系统开辟可能性。此外,我们还表明这种可拉伸复合材料可用作其他应用中的电极材料,包括线性响应高达 200% 应变且信号噪声接近于零的应变传感器。
化合物 2D-Cu 2 I 2 ( bs ) ( 1 ) 2D-Cu 2 I 2 ( bse ) ( 2 ) 经验式 C 6 H 4 Cu 2 I 2 N 2 SC 6 H 4 Cu 2 I 2 N 2 Se FW 517.05 563.95 空间群 P 2 1 P 2 1 /ma (Å) 4.1794(3) 4.1661(7) b (Å) 16.2245(13) 16.377(3)
在受控条件下,为材料和设备(包括但不限于武器系统组件)的开发、质量保证或可靠性而进行的户外测试和实验。涵盖的行动包括但不限于燃烧测试(例如电缆耐火性或燃料燃烧特性测试)、冲击测试(例如使用指定并经常用于此目的的土堤或混凝土板进行的气动喷射器测试)或跌落、穿刺、浸水或热测试。涵盖的行动不涉及源、特殊核或副产品材料,但根据适用标准制造的包含源、特殊核或副产品材料的封装源可用于非破坏性行动,例如探测器/传感器开发和测试以及急救人员现场培训。B3.15 使用纳米级材料的小规模室内研究和开发项目
热导率和辐射特性的预测至关重要。然而,计算声子散射,尤其是对于四声子散射,可能非常昂贵,并且在考虑四光子散射后,硅的导热率显着较低,而在文献中没有融合。在这里,我们提出了一种使用最大似然估计的少量散射过程样本来估算散射速率的方法。散射速率和相关导热率和辐射特性的计算大大加速了三到四个数量级。这使我们能够使用32×32×32的前所未有的Q -MENS(在相互空间中离散的网格)来计算硅的四频散射并实现收敛的导热率值,从而同意实验更好。我们方法的准确性和效率使其非常适合对热和光学应用的材料进行高通量筛选。
完整作者列表: Limbu, Tej;北卡罗来纳中央大学,化学和生物化学 Chitara, Basant;北卡罗来纳中央大学,化学与生物化学 Orlando, Jason;北卡罗来纳中央大学 Garcia Cervantes, Martha;北卡罗来纳中央大学,化学与生物化学 Kumari, Shalini;宾夕法尼亚州立大学帕克分校,物理系 Li, Qi;宾夕法尼亚州立大学帕克分校,物理系 Tang, Yongan;北卡罗来纳中央大学,数学与物理系 Yan, Fei;北卡罗来纳中央大学,化学与生物化学
利用可调动态纤维素纳米原纤维 (CNF) 网络制备高性能聚合物凝胶电解质。通过在酸性盐溶液中膨胀各向异性脱水但从未干燥的 CNF 凝胶,构建出一个高度稀疏的网络,其中 CNF 的比例低至 0.9%,充分利用了 CNF 的极高纵横比和超薄厚度(几微米长,2-4 纳米厚)。这些 CNF 网络暴露出高界面面积,可以将大量基于聚乙二醇的离子导电液体电解质容纳到强均质凝胶电解质中。除了增强的机械性能外,根据计算机模拟,CNF 的存在还由于其出色的强吸水能力而同时提高了离子电导率。这种策略使电解质的室温离子电导率达到 0.61 ± 0.12 mS cm −1,是聚合物凝胶电解质中最高的之一。该电解质作为磷酸铁锂半电池隔膜表现出优异的性能,具有高比容量(0.1C 时为 161 mAh g −1)、优异的倍率性能(5C)和循环稳定性(60°C 下 1C 下 300 次循环后容量保持率为 94%),以及稳定的室温循环性能,与商业液体电解质体系相比,安全性大大提高。
导电胶粘剂的特征在于其体积电阻率,这是衡量其横向导电性的指标。通常,银填充胶粘剂的体积电阻率约为 10 -4 Ω∙cm。然而,对于特殊应用,考虑 z 方向的导电性可能更有用。对于对导电性要求较低的应用,可使用较便宜的填料。
随着航空航天,通信和能源存储系统中高功率电子设备的快速发展,巨大的热量频率对电子设备安全构成了越来越多的威胁。与几个微厚度的薄膜相比,高质量的石墨烯厚纤维(GTF)超过数百微米厚度是一个有希望的候选者,可以解决由于较高的热量量,以解决热管理挑战。然而,传统的GTF通常具有较低的导热率和弱的机械性能,归因于板板比对和脆弱的界面粘附。在这里,提出了一种无缝的键合组件(SBA)策略,以使GTF超过数百微米,具有可靠的合并界面。对于厚度为≈250μm的GTF-SBA,平面内和平面导热率分别为925.75和7.03 w m-1 K-1,大约是传统粘合剂组装方法制备的GTF的GTF的两次和12次。此外,GTF-SBA即使在77 k循环到573 K的严酷温度冲击后,也表现出了显着的稳定性,从而确保了其在极端条件下长期服务的环境适应性。这些发现提供了对石墨烯大块材料界面设计的宝贵见解,并突出了高性能石墨烯材料在极端热管理需求中的潜在应用。