金属氧化物半导体是一类在我们的生活中得到日益广泛应用的材料,因为它们具有有趣的可调能带隙、优异的化学和机械稳定性等。随着技术的进步,能够生产出薄膜、纳米粒子、纳米线和纳米棒形式的金属氧化物,它们的应用多年来不断增长,从半导体电子器件扩展到传感器、光电子器件、催化、能量收集和存储设备。1 – 38 半导体金属氧化物的一个有趣的应用源于这样一个事实:一些金属氧化物可以掺杂外来元素,从而表现出与金属相当的电导率。这种氧化物的薄膜允许光通过,几乎不产生吸收,因此这种薄膜非常适用于作为光电器件的电极,因为光电器件需要既对光透明又能像金属一样导电的材料。这导致了透明导电氧化物 (TCO) 的发展,它是近代大多数光电子和光伏设备不可或缺的一部分。导电透明金属氧化物薄膜,例如 SnO 2 和 ZnO(氧化锌),正在许多消费电子产品中找到应用,尤其是平板显示器、触摸屏、光伏设备、低辐射玻璃、节能窗和储能设备。8 – 10,12 – 14,39 透明导电膜是一种薄层导电材料,在可见光范围内具有低吸收率(或高光透射率),是上述任何设备的基本要求。20 电导率和透明度可以进行定制,以扩大其在大量应用中的效用。 20 – 26 除透明导电薄膜外,氧化物/金属/氧化物多层结构也得到了广泛的研究,以提高它们的光透射率和电导率,以满足 TCO 的要求。11,40 – 42 图 1 显示了不同的透明氧化物及其在光伏设备、触摸屏、平板显示器和节能智能窗中的应用。然而,只有少数掺杂特定元素的金属氧化物作为 TCO 表现出令人满意的性能,例如铟 (In) 掺杂的 SnO 2 (ITO)、氟 (F) 掺杂的 SnO 2、铝 (Al) 掺杂的 ZnO、镓 (Ga) 掺杂的 ZnO 等,尽管这些都有各自的局限性。二氧化锡作为透明导电氧化物 (TCO) 因其广泛的应用而受到了广泛的研究关注,并得到了许多研究人员的评述。 9,12,43,44 评论文章主要讨论了 ITO 的挑战和机遇。它既具有低电阻率,又具有
使用碳酸钠(NACLO 4)基于琼脂 - 阿加尔(NACLO 4)的生物聚合物电解质膜的开发,使用乙烯碳酸乙酯(EC)作为原发性Na-Ion Battery S. Sowmiya a,*,*,C。Shanthi A,S.Selvasekarapandian B,C. S. Selvasekarapandian B,C a s. s. selvasekarapandian b,c a s。印度NADU,B材料研究中心,Coimbatore 641045,印度泰米尔纳德邦Bharathiar University,Coimbatore 641046,印度泰米尔纳德邦,印度泰米尔纳德邦641046,当前的研究调查了乙烯碳酸盐(EC)碳酸盐(EC)综合perch perch perch perch perch perch perch perch and agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-sod.采用便捷的溶液铸造方法来制造生物聚合物膜。制备的生物聚合物膜的特征是XRD,FTIR,DSC,AC阻抗,TGA,CV和LSV技术。X射线衍射分析(XRD)研究膜的晶体/无定形性质。傅立叶变换红外光谱(FTIR)证实了盐和聚合物之间的络合。添加钠盐并掺入增塑剂可将纯琼脂的离子电导率从3.12×10 -7 s cm -1 cm -1至3.15×10 -3 s cm -1提高。差异扫描量热法(DSC)研究玻璃过渡温度(T g)趋势,盐浓度。最高的导电生物聚合物膜的T g值为22.05°C。热重分析(TGA)检查膜的热稳定性。Wagner的DC极化技术评估了制备的膜的转移数。[4]。分别通过线性扫描伏安法(LSV)和环状伏安法(CV)研究了最高导电膜的电化学和循环稳定性。这些发现促进了具有最高性能生物聚合物膜的原代钠离子导电电池的发展。用两种不同的阴极材料(V 2 O 5和MNO 2)研究了电池的性能,当使用V 2 O 5用作阴极时,达到了3.13 V的最高显着开路电压(OCV)。(收到2023年9月13日; 2023年12月11日接受)关键词:生物聚合物膜,增塑剂,反卷积,电导率研究,环状伏安法1。正在进行研究以创建生物基的聚合物来解决环境挑战,这是当代全球目标的一部分,以为基于生物的未来做一个环保过程[1]。预计聚合物研究的增加,特别是关于生物聚合物,以满足未来的工业需求[2]。聚合物电解质(PE)的主要优势是它们的机械品质,更容易获得的薄膜制造和电化学设备。它们可以与电极材料形成良好的接触[3]。由于它们在固态电化学设备中的用途,离子传导PE引起了固态离子学的注意。聚合物研究的主要基本目标是合成具有优异离子电导率的聚合物系统。由于其强大的离子电导率,广泛的电化学稳定性和高能量密度,它们可以是固态电池中的电解质[5]。固体聚合物电解质(SPE)可以开发各种固态电化学设备,例如电池,燃料电池,传感器和太阳能电池[6,7]。生物聚合物及其基于的产品已被研究针对各种新型应用,在这些应用中,它们可以替代使用现有的