目的:深部脑刺激 (DBS) 导线周围的射频 (RF) 组织发热是 MRI 期间众所周知的安全风险,因此需要制定严格的成像指南并限制允许的方案。植入导线相对于 MRI 电场的轨迹和方向导致不同患者的 RF 发热程度存在差异。目前,没有针对植入 DBS 导线颅外部分的手术要求,这导致临床导线轨迹和 RF 发热存在很大差异。最近的研究表明,在颅外导线轨迹中加入同心环可以减少 RF 发热。然而,环的最佳定位和轨迹修改在 MRI 期间增加安全裕度方面的量化效益仍然未知。在本研究中,作者系统地评估了可在 3T MRI 期间最大限度减少 RF 发热的 DBS 导线轨迹的特征,以制定安全进行术后 MRI 的最佳手术实践,并且他们介绍了这些修改后轨迹的首次手术实施方式。方法作者进行了实验来评估 244 种不同导线轨迹的最大温升。他们研究了同心环的位置、数量和大小对颅骨的影响。实验是在植入商用 DBS 系统的拟人模型中进行的,通过应用高特定吸收率序列(B 1+rms = 2.7 µ T)产生射频暴露。作者进行了重测实验来评估测量的可靠性。此外,他们还评估了成像标志和 DBS 设备配置扰动对低加热轨迹功效的影响。最后,两名神经外科医生在患者体内植入了推荐的修改轨迹,作者通过与未修改轨迹的比较来表征他们的射频加热。结果 最高温度升高范围为 0.09 ° C 至 7.34 ° C。作者发现,增加环路数量并将其放置在更靠近手术钻孔的位置,特别是对于对侧导线,可以大大降低射频加热。这些轨迹修改在手术过程中很容易融入,并将射频加热降低了三倍。结论 通过手术修改 DBS 导线轨迹的颅外部分可以大大降低 3T MRI 期间的射频加热。作者的结果表明,在 DBS 导线植入过程中可以很容易地对导线配置进行简单的调整,例如在钻孔附近设置小的同心环,以提高 MRI 期间患者的安全性。
摘要 — 由于市场上可用的样品数量很少,通过实验确定 10 kV SiC-MOSFET 功率模块的可靠性具有挑战性。基于 3D 热计算的数字设计可提高 10 kV SiC-MOSFET 功率模块的可靠性。模块设计是根据数字孪生建模计算确定的。通过制造 10kV SiC-MOSFET 功率模块样品并将计算温度与测量结果进行比较,证实了数字孪生模型的正确性。该设计侧重于芯片上的铝线,并阐明了改变导线布局对导线温度的影响。结果表明,与传统设计相比,改进的导线布局可将导线温度降低 2.2-5.3%。根据基于 Coffin-Manson 模型的预测,这有望将功率循环能力提高高达 31%。
深部脑刺激 (DBS) 是治疗晚期帕金森病的有效方法。然而,确定刺激参数(例如接触和电流幅度)需要反复试验,非常耗时。定向导线增加了更多的刺激选项,使这个过程更具挑战性,增加了神经科医生的工作量,也增加了患者的不适感。在这项研究中,开发了一种最佳点引导算法,可以自动建议刺激参数。这些建议与临床单极评论进行了回顾性比较。在我们中心,一组 24 名帕金森病患者在丘脑底核接受了双侧 DBS 植入。首先,使用开源工具箱 Lead-DBS 重建 DBS 导线。其次,将刚度降低的最佳点设置为编程所需的刺激目标。这个最佳点和激活组织体积的估计值用于建议 (i) 最佳导线水平、(ii) 最佳接触和 (iii) 每次接触完全治疗效果的效果阈值。为了评估这些最佳点引导建议,临床单极评论被视为基本事实。此外,最佳点引导的最佳导线水平和最佳接触建议与重建引导的建议进行了比较,后者考虑了导线相对于丘脑底核的位置。最后,开发了一个图形用户界面作为 Lead-DBS 的附加组件,可供公众使用。使用该界面,可以在几秒钟内生成导线所有接触的建议。建议最佳接触的准确性
深部脑刺激 (DBS) 是治疗晚期帕金森病的有效方法。然而,确定刺激参数(例如接触和电流幅度)需要反复试验,非常耗时。定向导线增加了更多的刺激选项,使这个过程更具挑战性,增加了神经科医生的工作量,也增加了患者的不适感。在这项研究中,开发了一种最佳点引导算法,可以自动建议刺激参数。这些建议与临床单极评论进行了回顾性比较。在我们中心,一组 24 名帕金森病患者在丘脑底核接受了双侧 DBS 植入。首先,使用开源工具箱 Lead-DBS 重建 DBS 导线。其次,将刚度降低的最佳点设置为编程所需的刺激目标。这个最佳点和激活组织体积的估计值用于建议 (i) 最佳导线水平、(ii) 最佳接触和 (iii) 每次接触完全治疗效果的效果阈值。为了评估这些最佳点引导建议,临床单极评论被视为基本事实。此外,最佳点引导的最佳导线水平和最佳接触建议与重建引导的建议进行了比较,后者考虑了导线相对于丘脑底核的位置。最后,开发了一个图形用户界面作为 Lead-DBS 的附加组件,可供公众使用。使用该界面,可以在几秒钟内生成导线所有接触的建议。建议最佳接触的准确性
测量元件 (Rx) 的电阻时,测试电流会强制流过元件,测试仪表会测量其端子处的电压。然后,仪表会计算并显示所得电阻,这称为两线测量。需要注意的是,仪表测量的是其端子处的电压,而不是元件两端的电压。因此,连接导线两端的电压降也包含在电阻计算中。优质测试导线的电阻约为每米 0.02 Ω。除了导线的电阻外,导线连接的电阻也包含在测量中,其值可能与导线本身一样高,甚至更高。
> 自动补偿测试导线连接点的环境温度或指示冷端温度 > 热电偶和导线电阻测量精度达 0.01 欧姆,绝缘测量精度达两 (2) 兆欧 > 大型、9mm (0.35”) 高字符、3 1/2 位液晶显示屏,带有预编程的图例 > 范围:经认证的 0 至 1000º C,扩展为 -60 至 1160º C > 测量并以摄氏度 (ºC) 温度为单位显示 CH/AL 热电偶的值 > 模拟 CH/AL 热电偶,带或不带模拟系统导线电阻 > 精度:环境温度 (25ºC) 下的典型测量误差小于 ± 1ºC
什么是起搏器?起搏器是一种小型电子设备,植入于胸部皮下,用于维持适当的心率,通常用于防止心脏跳动过慢。大多数起搏器植入于左锁骨下方,但也可以植入于右锁骨下方,偶尔也可以植入于腹部。一般来说,起搏器由两部分组成:起搏器发电机(有时称为电池或罐)和一根或多根导线(称为导线)。发电机包含使起搏器工作的电池和计算机组件。导线是特殊的导线,一端连接到发电机,另一端植入于心脏内。小电脉冲从发电机传输并沿着导线传播,从而导致心脏收缩。起搏器可以植入一根、两根或三根导线。您接受的起搏器类型取决于您的临床诊断。为什么我需要起搏器?您曾经或现在有更大的心率减慢风险。这可能会导致您出现疲劳、头晕或呼吸急促等症状,在某些情况下,如果不及时治疗,可能会很危险。起搏器可以防止心率过慢,或者通过“填补空白”来帮助调节心律。双心室起搏器可帮助改善心力衰竭患者的症状。心力衰竭是指心脏的两个下腔不能同步跳动。需要安装起搏器的常见原因有:• 病态窦房结综合征(心脏自身的起搏器出现故障)• 心脏传导阻滞(上下腔之间断开)• 心房颤动(一种不规则的心律)• 心脏抑制性晕厥(由于支配心脏的神经过度活跃而失去意识)• 心力衰竭是指心脏的两个下腔不能同步跳动)
> 自动补偿测试导线连接点的环境温度或指示冷端温度 > 热电偶和导线电阻测量精度达 0.01 欧姆,绝缘测量精度达两 (2) 兆欧 > 大型、9mm (0.35”) 高字符、3 1/2 位液晶显示屏,带有预编程的图例 > 范围:经认证的 0 至 1000º C,扩展为 -60 至 1160º C > 测量并以摄氏度 (ºC) 温度为单位显示 CH/AL 热电偶的值 > 模拟 CH/AL 热电偶,带或不带模拟系统导线电阻 > 精度:环境温度 (25ºC) 下的典型测量误差小于 ± 1ºC
影响其他大脑功能。它不应引起任何不良副作用,如癫痫、头痛、情绪变化或认知障碍。安全电源 - 锂离子电池过热可能对 BCI 用户造成巨大风险。导线迁移 - Link 由一个圆盘状芯片组成,芯片上有非常细的导线电极,可连接到大脑中的神经元。由于自然运动、炎症或疤痕组织形成,导线会随着时间的推移而迁移。植入物移除 - 植入物移除的安全性和难度。数据隐私和安全 - 保护收集的数据免遭黑客攻击、操纵或以其他方式滥用。
1820 年,汉斯·克里斯蒂安·奥斯特发现导线中流动的电流会产生自己的磁场,当该磁场与第二个磁场相互作用时,就会在导体上产生一个力。该力与导线中流动的电流量、第二个磁场的强度以及受第二个磁场影响的导线长度成正比。力的方向可以通过一种称为右手定则的技术确定。如果您的右手如下图所示配置,其中拇指指向正电流流动的方向,食指指向第二个磁场的通量方向(即从北极流向南极),那么您的中指将指向作用在导线上的力的方向。