液态金属液滴具有恒定的质量密度和恒定的表面张力 σ ,这使其形成一个半径为 R 的球体。(在做这道题时,你可以忽略重力。)将一根细导线插入液滴中,并连接到电流源,电流源会慢慢给液滴充电。电荷有一个临界值 Q 0 ,它会导致液滴一分为二。每一半都占据总电荷的一半 Q 0 / 2,以及原始液滴质量的一半。“被弹出的一半”被排斥在远处,而另一半仍与导线保持接触。
标为 A 的问题很简单,标为 B 的问题难度更大,标为 C 的问题旨在让学生思考,标为 S 的问题则是概括性的。WebLearn 上的“化学家物理学”下有在线物理教程。1. 电流。漂移速度 1.1AA 横截面积为 A 的导线每单位体积包含 n 个传导电子。证明导线中的电流等于 i = nAve 其中 e 是电子上的电荷,v 是漂移速度。1.2A 早期的直流电表将 11% 的电流转移到电解池中,锌离子在电解池中被还原为锌。然后使用沉积的锌的质量来测量供给房屋的电荷。如果在一个月内沉积了 65.4 克锌,则供给了多少电荷?1.3AA 半径为 800 μ m 的银导线承载的电流为 15 mA。假设每个银原子释放一个传导电子,计算该导线中电子的漂移速度。银的摩尔体积为 10.27 cm 3 mol –1 。1.4A 碘化银是快速离子导体。在 420 K 以上,银离子变得可移动并导电,而碘离子保持固定。半径为 1.0 cm 的碘化银圆盘承载着 30 mA 的电流。计算银离子的漂移速度。碘化银的密度为 5683 kg m –3,相对分子质量为 234.773。1.5A 在横截面积为 1.00 cm 2 的电导池中,含有 1.00 mM 的 RbBr 溶液,流过的电流为 1.56 μ A。假设两个离子的漂移速度相等且方向相反,求它们。
经济分析 1 证实,在 CRT-D 设备中使用延长电池寿命 (2.1Ah) 可显著节省成本。此外,HRS 大会的数据显示,在不同的制造商中,波士顿科学 CRT-D 设备的使用寿命更长。本期的第二部分重点全面回顾 2 皮下疗法的最新进展,该疗法有数十年经过验证的临床证据支持,证明了其安全性和有效性。在这种疗法的发展过程中,出现了重大的技术创新,引发了最近关于 EMPOWER 无导线起搏器 3 的起搏性能的讨论,这是第一款能够为植入 S-ICD 的患者提供模块化方法的无导线起搏器。
ECG。 将六个电极放在胸部(前铅)上,四肢(肢体导线);随后在水平和额叶平面上均可进行电子活动。 5胸部导致在水平面上描绘电活动,肢体导致描绘额面上的活性。 适当的电极定位是不可能的,无法准确描绘电活动和随后的正确解释。 胸部导线通过V6标记为V1(V代表“电压”)。 通过V4引导V1从前表面观察心脏活动。 v1和v2查看室内隔膜和右心室的电动激活。 中间隔膜是分隔左心室和右心室的心脏组织壁。 6 V3和V4视图活动从左心室的前壁; V5和V6从左心室的下前外侧壁测量活性(请参见胸部铅)。 7ECG。将六个电极放在胸部(前铅)上,四肢(肢体导线);随后在水平和额叶平面上均可进行电子活动。5胸部导致在水平面上描绘电活动,肢体导致描绘额面上的活性。适当的电极定位是不可能的,无法准确描绘电活动和随后的正确解释。胸部导线通过V6标记为V1(V代表“电压”)。通过V4引导V1从前表面观察心脏活动。v1和v2查看室内隔膜和右心室的电动激活。中间隔膜是分隔左心室和右心室的心脏组织壁。6 V3和V4视图活动从左心室的前壁; V5和V6从左心室的下前外侧壁测量活性(请参见胸部铅)。7
掺杂剂诱导溶解度控制 (DISC) 聚合物半导体图案化技术的最新进展已使聚-3-己基噻吩 (P3HT) 的直接写入光学图案化成为可能,且分辨率达到衍射极限。在这里,我们将光学 DISC 图案化技术应用于最简单的电路元件——导线。我们展示了 P3HT 和掺杂有分子掺杂剂 2,3,5,6-四氟-7,7,8,8-四氰基醌二甲烷 (F4TCNQ) 导线的 P3HT 的光学图案化,尺寸为厚度 20-70 nm、宽度 200-900 nm 和长度 40 µ m。此外,我们还展示了“L”形弯曲和“T”形结等导线图案的光学图案化,而无需改变结处导线的直径或厚度。经过连续掺杂后,导线本身的电导率高达 0.034 S/cm。我们还证明了 P3HT 纳米线可以在溶液中掺杂、去掺杂和再掺杂,而不会改变导线的尺寸。光学图案化和可逆掺杂聚合物半导体的综合能力代表了一套完整的图案化步骤,相当于无机半导体的光刻技术。
掺杂剂诱导溶解度控制 (DISC) 聚合物半导体图案化技术的最新进展已使聚-3-己基噻吩 (P3HT) 的直接写入光学图案化成为可能,且分辨率达到衍射极限。在这里,我们将光学 DISC 图案化技术应用于最简单的电路元件——导线。我们展示了 P3HT 和掺杂有分子掺杂剂 2,3,5,6-四氟-7,7,8,8-四氰基醌二甲烷 (F4TCNQ) 导线的 P3HT 的光学图案化,尺寸为厚度 20-70 nm、宽度 200-900 nm 和长度 40 µ m。此外,我们还展示了“L”形弯曲和“T”形结等导线图案的光学图案化,而无需改变结处导线的直径或厚度。经过连续掺杂后,导线本身的电导率高达 0.034 S/cm。我们还证明了 P3HT 纳米线可以在溶液中掺杂、去掺杂和再掺杂,而不会改变导线的尺寸。光学图案化和可逆掺杂聚合物半导体的综合能力代表了一套完整的图案化步骤,相当于无机半导体的光刻技术。