联邦政府在 1164-1215 MHz 频段的空对地和空对空方向运行航空无线电导航和无线电导航卫星系统。在此频段运行的地基和机载系统控制国家空域 (NAS) 内的民用和军用飞机。测距设备 (DME) 系统及其军用版本战术空中导航 (TACAN) 系统在整个频段运行。全球导航卫星系统 (GNSS) 是在无线电导航卫星服务 (RNSS) 中运行的系统的标准通用术语,可提供具有全球覆盖的自主地理空间定位。在美国,此类系统被称为定位、导航和授时 (PNT) 系统。这些系统允许接收器使用卫星发射的信号确定其位置(经度、纬度和高度),并为全球众多用户提供精确的授时。国防部(DoD)在此频段协调运营一个通信系统,即联合战术信息分发系统(JTIDS)。
(8) 监测工具和技术的快速发展,特别是通过星载或空中方式进行地球观测以及全球导航卫星系统的快速发展,为森林监测的现代化、数字化和标准化提供了独特的机会,为森林使用者和当局提供服务,并支持自愿的综合长期规划,同时刺激了欧盟市场在这些技术和相关新技能方面的增长,包括针对中小企业(SME)。到目前为止,地球观测可以探测到森林覆盖率的快速变化,例如由于森林干扰而导致的快速变化,并可提高森林监测的效率。然而,需要进行地面测量来开发、验证和校准地球观测数据产品。此外,许多与森林干扰或生物多样性相关的特征(例如森林干扰原因的归因、枯木数量、森林自然度或原始森林的存在)仅使用地球观测很难预测大面积区域。
建议 6/8 — 规划缓解全球导航卫星系统的脆弱性 各国:a) 评估其空域内全球导航卫星系统脆弱性的可能性和影响,并在必要时采用公认和可用的缓解方法;b) 对全球导航卫星系统(GNSS)频率进行有效的频谱管理和保护,以减少无意干扰或降低 GNSS 性能的可能性;c) 向国际民航组织报告可能对国际民用航空运行产生影响的全球导航卫星系统有害干扰案件;d) 建立并执行强有力的监管框架,管理全球导航卫星系统中继器、伪卫星、欺骗器和干扰器的使用;e) 允许充分利用机载缓解技术,特别是惯性导航系统; f) 当确定需要地面辅助设备作为缓解策略的一部分时,优先保留测距设备(DME)以支持惯性导航系统(INS)/DME 或 DME/DME 区域导航,以及在选定跑道上保留仪表着陆系统。3
地球同步赤道轨道(GEO)是许多重要空间资产的所在地,例如远程通讯和导航卫星。GEO中监视居民空间对象(RSO)是实现空间情境意识(SSA)和保护批判空间资产的关键方面。然而,由于目标的极端距离以及包括云的缘故,大气/天气效应,光污染,传感器噪声/缺陷和恒星闭合,因此基于地面的地理对象进行了挑战。Kelvins Spotgeo挑战旨在确定来自低成本地面望远镜的图像在多大程度上可用于检测GEO和近Geo RSO,仅来自没有任何其他元数据的光度信号。同时,Spotgeo数据集还解决了有关卫星检测问题的计算机视觉观点中缺乏公开可用的数据集;通过组装和释放这样的数据集,我们希望在光学检测RSO上付出更多的努力,并为现有方法和将来的方法提供客观的台式标记。在这项工作中,我们介绍了Spotgeo数据集开发,Challenge设计,评估指标和结果分析的详细信息。
2006 年,美国总统发布的《美国国家太空政策》指出,美国政府应“培养太空专业人员”。作为这项努力不可或缺的一部分,AU-18《太空入门》为联合作战人员提供了非机密资源,帮助他们了解太空部队的能力、组织和行动。从历史上看,美国一直是太空探索和利用领域的世界领导者。2001 年,美国国家安全太空管理和组织评估委员会一致得出结论:“美国及其盟友和朋友的安全和福祉取决于国家在太空行动的能力。”1 最近的冲突和世界事件不断证明太空资产和能力对我们安全职能的重要性。我们的导航卫星为飞机、地面部队、舰船和指挥中心提供即时精确的位置和目标信息。这些卫星还为全球提供精确的定时源,这对于维护基础设施至关重要,包括金融机构、电网、手机,甚至我们的有线和卫星电视。通信卫星为国家安全基础设施的各个层面提供全球连接。气象卫星可以近乎实时地向战区部队报告气象数据,比以往更好。预警卫星可以探测和报告导弹发射,并充当战略
本研究探讨了使用激光通信 (lasercom) 卫星间链路获取自主导航的相对位置测量值。激光通信交联链路有可能提供卫星间距离和方位测量值,以便在各种轨道情况下准确导航卫星,包括 GNSS 拒绝、GNSS 受限和深空环境。在低地球轨道 (LEO)、地球静止轨道 (GEO)、高椭圆轨道 (HEO) 和火星轨道星座的示例应用案例中,使用数值模拟将激光通信交联方法与传统定位和导航方法进行比较。在地球轨道上使用激光通信测量会导致 LEO 上的误差为 2 米,GEO 上的误差为 10 米,HEO 上的误差为 50 米,与当前基于 GNSS 的导航误差相当。采用所提导航方法的火星轨道器群定位误差为 10 米,与目前 DSN 导航误差相当(当 DSN 操作可用时),并且优于 DSN 数据间隙期间传播的状态知识。使用卫星间激光通信系统进行轨道测定还可以减少对地面跟踪和导航系统的依赖,从而提高太空任务的自主性。
LPSC 是印度空间研究组织的一个中心,与上级部门有着相同的愿景、使命和目标。— 访问印度空间研究组织网站 愿景 利用、维持和增强空间技术促进国家发展,同时开展空间科学研究和行星探索。 使命 设计和开发运载火箭及相关技术,以提供进入太空的通道。 设计和开发用于地球观测、通信、导航、气象学和空间科学的卫星及相关技术。 空间科学和行星探索的研究与开发。 促进和授权私营公司在全球航天市场中发挥关键作用 目标 • 极地卫星运载火箭 ( PSLV )、地球同步卫星运载火箭 ( GSLV ) 和小型卫星运载火箭 ( SSLV ) 的运行飞行 • 设计和开发新的空间运输解决方案 • 通信卫星的设计、开发和实现 • 地球观测卫星的设计、开发和实现。 • 导航卫星系统的发展 • 空间科学和行星探索卫星的发展 • 先进技术和新举措 • 培训、能力建设和教育 • 空间技术的推广 • 空间研究基础设施/设施的发展 • 国际合作 • 印度太空计划产品和服务的商业利用 • 印度私营企业在太空领域的推广和授权
太空飞行系列文章的一部分 历史 太空飞行史 太空竞赛 太空飞行时间线 太空探测器 月球任务 应用 地球观测卫星 间谍卫星 通讯卫星 军用卫星 卫星导航 太空望远镜 太空探索 太空旅游 太空殖民 航天器 机器人航天器 卫星 太空探测器 货运航天器 载人航天 太空舱 阿波罗登月舱 航天飞机 空间站 太空飞机 航天发射 太空港 发射台 一次性和可重复使用的运载火箭 逃逸速度 非火箭航天发射 航天类型 亚轨道 轨道 行星际 星际 星系际 空间组织列表 航天机构 太空部队 公司 太空飞行门户网站 卫星导航或 satnav 系统是一种使用卫星提供自主地理定位的系统。覆盖全球的卫星导航系统称为全球导航卫星系统 (GNSS)。截至 2023 年[更新],有四个全球系统投入运营:美国的全球定位系统 (GPS)、俄罗斯的全球导航卫星系统 (GLONASS)、中国的北斗卫星导航系统[1] 和欧盟的伽利略。[2] 正在使用的区域导航卫星系统是日本的准天顶卫星系统 (QZSS),这是一种基于 GPS 卫星的增强系统,可提高 GPS 的准确性,卫星导航独立于 GPS 计划于 2023 年实现[3],以及印度的区域导航卫星
(0921)导航卫星授时和测距 (NAVSTAR) 全球定位系统 (GPS) 项目涵盖了海军为应对日益增长的 GPS 导航威胁所做的努力,通过在所有海军平台类型上部署新的 GPS 接收器、抗干扰 (AJ) 天线和保证位置导航和授时 (A-PNT) 技术。NAVSTAR GPS 是一组 A-PNT 系统,可为授权用户提供安全、全球、全天候、三维位置、速度和精确时间数据。NAVSTAR GPS 为空中和海上领域独立和网络架构中的指挥、控制、通信、计算机、情报、监视和侦察 (C4ISR) 和作战系统提供 A-PNT 功能。该项目由四项不同的工作组成:海上导航战 (NAVWAR)、基于 GPS 的定位、导航和授时 (PNT) 服务 (GPNTS)、空中导航战 (NAVWAR) 和 GPS 现代化。海上导航战为水面平台提供 AJ 天线,GPNTS 为水面平台提供 GPS 接收器和 A-PNT 技术,空中导航战为空中平台提供 AJ 天线,GPS 现代化为空中平台提供 GPS 接收器。研究、开发、测试和评估 (RDT&E) 资金用于执行所有非经常性 GPS 水面舰艇、潜艇和飞机开发、集成和测试工作,以支持 NAVSTAR GPS。
航天器间会合和近距操作 (RPO) 期间的机载制导、导航和控制 (GNC) 对相关算法提出了独特的挑战。未来的任务将需要更大的机载自主性,同时保持不同距离的在轨安全保障,感兴趣的场景可能涉及多个航天器,这些航天器可能是合作的,也可能是非合作的。本文介绍了一种用于分布式空间系统的新型 GNC 软件有效载荷的构想和开发,该有效载荷可在多个物体之间实现安全、自主的 RPO,并具有最大的灵活性和模块化。导航算法融合了远距离摄像机图像、近距离摄像机图像、差分载波相位全球导航卫星系统数据和卫星间交联数据,以估计整个感兴趣范围内的绝对轨道、相对轨道、目标姿势和辅助状态。控制算法套件提供了最佳机动解决方案,可在远距离实现有效的长期编队维持、近距离实现厘米级会合精度以及快速、稳健的防撞。远、中、近距离的合作和非合作目标原型模拟展示了分布式空间系统的强大 GNC 性能,也是实现航天器灵活自主 RPO 套件完全集成的重要一步。