1。灵活状态表示:节点可以表示带有特征的连续坐标2。 div>连续动作:图形可以扩展到新的2D位置3。连续的欧几里得对称性:2D上的几何图是(2) - 可转化
Vision语言导航(VLN)要求代理在基于视觉观察和自然语言说明的3D环境中导航。很明显,成功导航的关键因素在于全面的场景理解。以前的VLN代理使用单眼框架直接提取透视视图的2D特征。虽然很简单,但他们为捕获3D几何和语义而努力,导致部分不完整的环境代表。为了实现具有细粒细节的全面3D表示,我们引入了体积环境(VER),将物理世界脱氧于结构化的3D细胞中。对于每个单元格,通过2D-3D采样将多视图2D特征归纳到如此统一的3D空间中。通过对VER的粗略到纤维特征进行推断和多任务学习,我们的代理人可以共同预测3D占用率,3D房间布局和3D边界框。基于在线收集的vers,我们的代理构成了体积状态估计,并构建情节内存以预测下一步。实验结果表明,我们从多任务学习的环境表示导致了VLN的可观绩效提高。我们的模型在VLN基准(R2R,Reverie和R4R)之间实现了最新的性能。
引言月球的诱惑很强 - 人类再次应对挑战。一个有前途的近期场景是将一对流浪者降落在月球上,并参与多年1000公里的历史景点,包括阿波罗11号,测量师5,游侠8,阿波罗17和Lunokhod 2 [6]。在这种情况下,流浪者将以自主或保护的监督控制模式进行操作,并将其周围环境的连续实时视频传输到地球上的操作员。虽然这种任务的硬件方面令人生畏 - 电源,热,通信,机械和电气可靠性等。- 软件控制方面同样具有挑战性。特别是,流动站需要能够在各种地形上行驶并维护其操作的能力。以前的行星机器人(尤其是Lunokhod 2和Viking的手臂)的经验说明了远程操作员的费力和不可预测的时间延迟的漫画。更好的操作模式是监督远程运行,甚至是自动操作,其中流动站本身负责做出许多维持进度和安全所需的决定。我们已经开始了一项计划,以开发和演示技术,以在月球般的环境中启用远程,保护的远程操作和自动驾驶。特别是,我们正在研究立体声的技术
目的:对心血管疾病的治疗需要对导丝和导管进行复杂而挑战性的导航。这通常会导致长期干预措施,在此过程中,患者和临床医生暴露于X射线辐射。深度强化学习方法在学习此任务方面表现出了希望,并且可能是在机器人干预过程中自动导管导航的关键。然而,现有的培训方法显示出有限的能力,可以概括看不见的血管解剖结构,每次几何变化时都需要重新训练。方法:在本文中,我们为三维自主内血管内导航提出了零射击学习策略。使用一组非常小的分支模式训练集,我们的增强学习算法能够学习一个控制,然后可以将其应用于不看到的无需再培训的情况下。结果:我们在4种不同的血管系统上演示了我们的方法,在达到这些解剖学的随机靶标时,平均成功率为95%。我们的策略在计算上也有效,可以在2小时内对控制器进行训练。结论:我们的培训方法证明了其具有不同特征的不观察几何形状的能力,这要归功于几乎形状不变的观察空间。关键字 - 强化学习,控制,血管内导航,机器人技术
文章历史:在过去的十年中,已经开发了各种基于速度障碍的方法,以避免动态环境中的碰撞。但是,这些方法通常仅限于处理几个障碍,连续的相遇或缺乏安全地形的安全保证。本文提出了使用速度障碍法的自适应碰撞避免策略,旨在使自主火星流浪者能够安全地驾驶动态和不确定的地形,同时避免多个障碍。该策略构建了自适应速度锥体,考虑了动态障碍和地形特征,从而确保了连续的安全性,同时将漫游者引导到其航路点。我们在模拟的MARS探索方案中实施了策略,代表了具有挑战性的多OSTACLAS任务。模拟结果表明,我们的方法通过增加安全距离来增强性能,使其非常适合自主行星探索,在这种情况下,避免碰撞对于任务成功至关重要。
摘要 - 智能车辆(IV)的运营安全是一个核心主题,也是许多研究项目的复杂问题。虽然在验证驾驶自动化系统的最可靠方法上尚未达成共识,但存在基于操作设计域(ODD)的规范的几种方法,例如基于方案的测试和实时操作域(OD)限制。在我们的案例中,我们将重点放在奇怪的概念作为IV的安全保证的作用上,以及如何与对其操作领域(OD)的实时监控相结合可以作为复杂移动系统的保障。我们建议分析在OD/ODD监测操作安全领域提出的相关文献,标准,作品和建议,并将它们组装为三类:首先涉及使用分类法和本体来代表车辆驾驶环境要素的使用;第二个涉及通过专用语言对奇数的形式定义。第三个问题是允许监视车辆OD以提高操作安全性的技术。通过从确定的方法中退后一步,我们突出显示如何以连贯的方式组合它们,以朝着符合奇数定义和OD/奇数监视的框架前进。
摘要 - 学习机器人导航策略 - 三角形对于基于域的应用至关重要。结合感知,计划和预测使我们能够对机器人和行人之间的相互作用进行建模,从而导致不断的结果,尤其是基于深度强化学习(RL)的最新方法。但是,这些作品不考虑多机器人方案。在本文中,我们提出了MultiSoc,这是一种使用RL学习多代理社会意识的导航策略的新方法。受到有关多代理深度RL的最新作品的启发,我们的方法利用了基于图形的代理相互作用的表示,结合了实体(行人和代理人)的位置和视野。每个代理使用基于两个图神经网络和注意机制的模型。首先,边缘se子产生一个稀疏的图,然后一个人群坐标应用了节点注意,以产生代表每个实体对其他实体的影响的图。这被整合到一个无模型的RL框架中,以学习多代理策略。我们评估了我们的模拟方法,并在各种条件(代理 /行人的数量)中提供了一系列实验。经验结果表明,我们的方法比社会导航更快地学习了深度RL单一代理技术,并且可以在挑战人群导航中通过多个异构人类进行有效的多代理隐式协调。此外,通过合并可自定义的元参数,我们可以调整邻里密度以考虑到我们的导航策略。
摘要 - 人类通过专注于与导航相关的特定视觉区域,在没有碰撞的情况下有效地通过人群导航。但是,大多数机器人视觉导航方法都依赖于对视觉任务进行预训练的深度学习模型,这些模型优先考虑显着对象,而不一定与导航和潜在的误导有关。替代方法从头开始训练专业导航模型,需要大量计算。另一方面,自我监督的学习彻底改变了计算机视觉和自然语言处理,但是由于难以定义有效的自学信号,因此其在机器人导航中的应用仍未被忽略。是由这些观察结果激励的,在这项工作中,我们为视觉导航预训练(VANP)提出了一种自我监督的视觉动作模型。而不是检测对分类或检测等任务有益的显着对象,而是学会仅专注于与导航任务相关的特定视觉区域。为了实现这一目标,VANP使用了视觉观察的历史记录,未来的动作和一个自upervision的目标图像,并使用两个小型变压器编码器嵌入它们。然后,通过使用共同信息最大化目标函数,VANP最大化嵌入之间的信息。我们证明了大多数VANP提取的功能与人类导航直觉匹配。vanp的性能可相当,因为模型学习了端到端的一半训练时间和在大规模,完全监督的数据集(即Imagenet)上进行培训的模型,只有0.08%的数据。1
摘要 - 无人机技术的快速发展已扩大了其应用程序,包括递送服务,环境监控以及搜索和救援操作。然而,这些应用中的许多应用在受GPS污染的环境中遇到了重大挑战,例如密集的城市地区和森林森林森林茂密的地区,传统导航方法却摇摇欲坠。本文提出了一种新型的多传感器融合算法,旨在提高自主无人机的定位准确性而不依赖GPS。通过整合来自惯性测量单元(IMU),LIDAR和视觉传感器的数据,提出的方法有效地补偿了单个传感器的局限性,从而在复杂的环境中实现了可靠的导航。实验结果表明,该算法在城市地区达到1.2米的平均定位精度,在森林环境中达到1.5米,从而展示了其针对传感器噪声和环境挑战的弹性。循环封闭技术的实施进一步提高了长期导航准确性,使其适合长时间的任务。这项研究有助于自动无人机导航的知识越来越多,并为增强现实情况下无人机的操作能力带来了重大影响。未来的工作将集中于整合其他传感器,探索机器学习技术以进行自适应融合,并进行广泛的现场试验以验证系统在动态环境中的性能。
摘要 - 对象目标导航(ObjectNav)是指在看不见的环境中导航到对象的代理,这是完成复杂任务时通常需要的能力。尽管它引起了体现的AI社区研究人员的越来越多的关注,但对ObjectNAV的当代和全面调查并没有。在这项调查中,我们通过总结了70多个最近的论文来概述该领域。首先,我们给出了ObjectNav的前期:定义,模拟器和指标。然后,我们将现有作品分为三个类别:1)直接将观测值映射到操作的端到端方法,2)由映射模块,策略模块和路径计划模块组成的模块化方法,以及3)使用零量的零摄像方法,使用零量量学习来进行导航。最后,我们总结了现有作品的性能和主要故障模式,并讨论了ObjectNAV的挑战。本调查将为该领域的研究人员提供完整的信息,以更好地了解ObjectNAV。