近年来,由于图像引导的交互式系统的发展,神经外科的发展良好。引入神经运动系统是提高神经外科质量的巨大飞跃。旨在调查导航系统在颅骨手术中的作用,借助Easy Nav Navigation System执行的案例,首次通过游戏硬件和软件进行了审查。材料和方法:在2017年至2021年期间进行了导航指导进行的500次颅手术,并研究了手术结果,有效性。在所有情况下,有71%为脑肿瘤,4%的血管异常,15%垂体肿瘤和剩余的颅内出血和囊肿。结果:研究得出结论,EasyNav导航可以有效地定位病变,减少暴露区域,降低对正常脑组织的伤害以及整体手术时间减少。导航在各种手术中被证明是有效的,无论位点,大小,一致性和血管性如何。然而,在俯卧位的手术中,特别是在后窝中进行的几个手术中可以看出微小的目标指示。结论:简单的NAV神经导航系统被证明是一种负担得起的,简单,直接的基于光学跟踪的导航系统,而其他导航系统对于尼泊尔等发展中国家来说太昂贵了。导航系统已帮助外科医生在困难的部位和深脑结构中找到病变。微切裂术,完整的切除,通过导航的指导更好地定位病变,有助于提高颅骨手术的整体结果。
神经导航的基本原理是尽早建立精确的变换矩阵,从而在数字图像数据和解剖结构之间建立联系,从而提供不断增强的三维方向 [3]。如前所述 [4],将先前获取的成像坐标与实际物理解剖坐标进行联合配准,可以同步两者,并构成神经导航和其他立体定向程序的基础。神经导航的基本程序包括以下步骤:1-建立物理坐标,通常可以使用立体定向框架基于框架,也可以使用基准标记或表面标志建立无框架。 2-使用以下任一或组合成像模式建立成像坐标 - MRI、CT、PET、单光子发射 CT、X 射线、功能性 MRI 等。3- 在导航机器的计算机系统上配准成像坐标 4- 成像坐标和实际物理解剖空间的联合配准,构成神经导航精度的支柱。5- 手术计划,以确定手术切入点、手术通道和手术目标的轨迹。6- 导航,贯穿整个手术过程 - 诊断活检或肿瘤切除/减瘤。
我们的工作:通过升级和新建电力线、变压器和变电站来扩大配电系统的容量;实现互连过程自动化,使其成为一个更加无缝且易于导航的系统;创建专门团队,帮助所有客户获得满足其需求的清洁能源选择;并合作制定新的费率和计划,帮助客户更好地管理和支付账单并推动智能能源使用。
探路算法在自动导航的领域至关重要,从而影响了机器人和AI系统的效率和安全性。本文在具有静态障碍物的基于网格的模拟中,对三种突出的探路算法进行了比较分析:A*算法,粒子群优化(PSO)和FICK的定律算法(FLA)。我们根据路径最佳,计算效率和对标准化环境的适应性评估每种算法的性能。A*算法以其基于启发式的搜索而闻名,它通过利用特定于网格的启发式方法来显示出卓越的性能。PSO受自然界的社会行为的启发,展示了路径轨迹的灵活性,在障碍物周围提供了更平滑的导航。fla是一种较新的方法,在A*的确定性和PSO的随机行为之间取得了平衡,显示了计算资源有限的应用中的潜力。我们的发现表明,尽管A*仍然是需要精确探路的网格限制导航的最佳选择,但PSO和FLA在优先级的灵活性和计算简单性的情况下可能会提供优势。这项研究增强了对探路方法的理解,为未来的研究铺平了道路,以改善这些算法的动态环境,并整合自适应启发式机制,以改善现实世界的适用性。
1.2.1 水平参考系统 1.2.1.1 世界大地坐标系统 - 1984 (WGS-84) 应作为国际航空导航的水平 (大地) 参考系统。因此,已发布的航空地理坐标 (标明纬度和经度) 应以 WGS-84 大地参考基准表示。 1.2.1.2 在精密大地测量应用和某些航空导航应用中,应模拟和估计板块运动和潮汐对地壳的影响随时间的变化。为了反映时间效应,任何一组绝对站坐标都应包括一个纪元。 1.2.1.3 已转换成WGS-84坐标但原实地工作精度不符合MCAR 139和MCAR 11要求的地理坐标 1.2.1.4 地理坐标的公布分辨率顺序应按照本MCAR附录1和附录4表A7-1规定的顺序,地理坐标的航图分辨率顺序应按照附件4、附录6表1规定的顺序。 1.2.2 垂直参考系统 1.2.2.1 平均海平面(MSL)基准应作为国际空中导航的垂直参考系统,该基准给出了重力相关高度(高程)与大地水准面的关系。大地水准面在全球范围内最接近于MSL。它被定义为地球重力场中的等位面,与地球引力场重合。
• 没有支持会合导航的反射器/LED/标记 • 没有专用的对接端口/捕获环等。 • 无法与物体通信 • 关于目标的信息很少(没有详细的几何模型) • 最终损坏的物体(损坏的卫星、碎片) • 在低地球轨道 (LEO) 中:服务人员和地面之间没有永久联系 需要机载自主权! • 在地球同步轨道 (GEO) 中:地面和太空之间有几秒钟的时间延迟
1.2.1 水平参考系统 1.2.1.1 世界大地坐标系统 - 1984 (WGS-84) 应作为国际航空导航的水平 (大地) 参考系统。因此,已发布的航空地理坐标 (标明纬度和经度) 应以 WGS-84 大地参考基准表示。 1.2.1.2 在精密大地测量应用和某些航空导航应用中,应模拟和估计板块运动和潮汐对地壳的影响随时间的变化。为了反映时间效应,任何一组绝对站坐标都应包括一个纪元。 1.2.1.3 已转换成WGS-84坐标但原实地工作精度不符合MCAR 139和MCAR 11要求的地理坐标 1.2.1.4 地理坐标的公布分辨率顺序应按照本MCAR附录1和附录4表A7-1规定的顺序,地理坐标的航图分辨率顺序应按照附件4、附录6表1规定的顺序。 1.2.2 垂直参考系统 1.2.2.1 平均海平面(MSL)基准应作为国际空中导航的垂直参考系统,该基准给出了重力相关高度(高程)与大地水准面的关系。大地水准面在全球范围内最接近于MSL。它被定义为地球重力场中的等位面,与地球引力场重合。