HUD 系统是为新飞机和改装应用而开发的,通常由飞行员显示单元和电子单元(计算机)组成,后者执行接口、符号生成和武器瞄准(空对空和空对地)。对于特定项目,电子单元还可以执行完整的导航计算。最新的系统是双模式的,其中显示可以是正常的飞行/武器瞄准符号,也可以是前视传感器(如前视红外)的光栅(电视类型)显示,并叠加正常的符号。还生产了许多类型的下视显示器,最新的使用触摸交互系统来方便飞行员!系统界面。为了补充夜视 HUD,生产了两种类型的夜视镜:“猫
活动 HUD 系统是为新型飞机和改装应用而开发的,通常由飞行员显示装置和电子装置(计算机)组成,后者负责界面、符号生成和武器瞄准(空/空和空/地)。对于特定项目,电子装置还可以执行完整的导航计算。最新的系统是双模式的,其中显示可以是正常的飞行/武器瞄准符号,也可以是前视传感器(如前视红外线)的光栅(电视类型)显示,并叠加正常的符号。还生产了许多类型的俯视显示器,最新的使用触摸交互系统来简化飞行员!系统界面。为了补充夜视 HUD,生产了两种类型的夜视镜:专门用于固定翼的“猫眼”和用于固定翼和直升机应用的“夜枭”。
在存在不必要的干扰(例如风)和飞行器模型中的不确定性(例如空气动力学特性中的错误)的情况下实现制导命令。导航、制导和控制可以松散或非常紧密地耦合。松散耦合的系统可能类似于大型水面舰艇。舰船的导航系统确定当前位置、速度和航向。可以执行相当简单的制导计算来确定到达下一个目标位置的最有效的“大圆”路线。在这种情况下,控制系统是舰船的舵和轴,并发出命令以达到制导计算指示的所需速度和航向。然而,高速机动再入飞行器需要紧密耦合的系统。飞行器可以利用 INS 或 GPS 的测量值进行导航;同时,它可以根据更新的导航计算修改制导命令,并同时使用这些计算来评估控制律对飞行器的操纵效果,并在导航测量中出现错误时修改命令。
本章的最终目标是,一架刚性飞机在扁圆形旋转地球上空的运动方程。平地方程描述了在重力恒定的非旋转地球上一小块区域上的运动,我们将作为特殊情况推导得出该方程。为了达到这个最终目标,我们将使用经典力学的矢量分析来建立运动方程,使用矩阵代数来描述坐标系的运算,并使用大地测量学、引力和导航中的概念来介绍地球形状和质量引力的影响。在第 2 章之前,作用在飞行器上的力矩和力(地球的质量引力除外)将是抽象的。在此阶段,只要有合适的力和力矩模型,这些方程就可以用来描述任何类型的航空航天飞行器(包括地球卫星)的运动。术语“刚性”意味着不允许结构灵活性,并且假定飞行器中的所有点始终保持相同的相对位置。在大多数情况下,这种假设对于飞行模拟来说已经足够好了,并且对于飞行控制系统设计来说也足够好了,前提是我们不试图设计一个系统来控制结构模式或减轻飞机结构上的气动载荷。运动方程处理所需的矢量分析通常会给学生带来困难,特别是角速度矢量的概念。因此,提供了相关主题的回顾。在某些情况下,我们已经超越了传统的飞行力学方法。例如,由于四元数具有“全姿态”能力以及在模拟和控制中的数值优势,因此引入了四元数。它们现在广泛应用于模拟、机器人、制导和导航计算、姿态控制和图形动画。主题来自
部分 A 简答题(模块 I) 1. 定义术语“航空电子系统”。 答:- 安装在飞机上的所有依赖电子设备运行的电子和机电系统和子系统(硬件和软件)。航空电子系统对于使机组人员安全执行飞机任务和以最少的机组人员满足任务要求至关重要。 2. 简要解释飞行管理系统 (FMS) 答:- FMS 使用来自 GNSS 传感器、空气数据传感器和其他机载传感器的输出执行必要的导航计算并通过一系列显示单元向机组人员提供信息。飞行管理系统为飞机提供主要导航、飞行计划和优化航线确定和航路引导,通常包含以下相互关联的功能:导航、飞行计划、轨迹预测、性能计算和引导。为了实现这些功能,飞行管理系统必须与其他几个航空电子系统接口。 3. 解释 FBW 控制系统。答案:� 可实现更轻、性能更高的飞机,设计时具有宽松的稳定性� 良好的一致操纵性,在宽广的飞行包线和负载条件范围内保持恒定� 通过计算机控制控制面,连续自动稳定飞机� 自动驾驶仪集成� 无忧的机动特性� 能够自动集成其他控制装置,例如 o 前缘缝翼/襟翼和后缘襟翼以产生额外升力 o 可变机翼后掠角 o 推力矢量控制喷嘴和发动机推力� 消除机械控制运行 - 摩擦、反冲� 小型控制杆� 能够利用空气动力学不稳定配置