摘要。随着高度自动化的船舶无人驾驶,其操作员将进入岸基控制中心。近年来,挪威科技大学建立了先进而灵活的研究基础设施,用于对自主船舶进行研究以及对这些船舶的监控和控制。基础设施包括 (1) milliAmpere1 和 milliAmpere2,这是两艘全电动自主城市客运渡轮,配备了先进的传感器和自主导航设备;(2) 岸上控制实验室,一个灵活的岸上控制中心,操作员可以在这里监视和控制一支自主船队;(3) 一个实验室部分,研究人员可以在这个实验室向控制中心的操作员发出指令,并记录、观察和分析他们的行为;(4) 一个毗邻控制室的观察室,利益相关者可以观察控制室正在进行的实验;(5) 渡轮模拟器 Autoferry Gemini,允许研究人员创建具有挑战性或高风险的场景,在这些场景中,操作员可以接受压力测试,而不会对船舶、船员和乘客造成危险;(6) 混合现实实验室 MRLAB,我们可以在虚拟环境中测试城市自主客运渡轮的物理设计;(7) 一个用于处理乘客并具有感应充电功能的码头。在本文中,我们首先描述了研究基础设施的目的和运行范围,以及技术设计、物理设置和设备。其次,我们提出了研究基础设施发展的路线图,以应对未来自主船舶及其监督和控制方面的研究挑战。第三,我们提出了未来几年将在实验室中探索的一系列研究问题。
摘要。随着高度自动化的船舶无人驾驶,其操作员将进入岸基控制中心。近年来,挪威科技大学建立了先进而灵活的研究基础设施,用于对自主船舶进行研究以及对这些船舶的监控和控制。基础设施包括 (1) milliAmpere1 和 milliAmpere2,这是两艘全电动自主城市客运渡轮,配备了先进的传感器和自主导航设备;(2) 岸上控制实验室,一个灵活的岸上控制中心,操作员可以在这里监视和控制一支自主船队;(3) 一个实验室部分,研究人员可以在这个实验室向控制中心的操作员发出指令,并记录、观察和分析他们的行为;(4) 一个毗邻控制室的观察室,利益相关者可以观察控制室正在进行的实验;(5) 渡轮模拟器 Autoferry Gemini,允许研究人员创建具有挑战性或高风险的场景,在这些场景中,操作员可以接受压力测试,而不会对船舶、船员和乘客造成危险;(6) 混合现实实验室 MRLAB,我们可以在虚拟环境中测试城市自主客运渡轮的物理设计;(7) 一个用于处理乘客并具有感应充电功能的码头。在本文中,我们首先描述了研究基础设施的目的和运行范围,以及技术设计、物理设置和设备。其次,我们提出了研究基础设施发展的路线图,以应对未来自主船舶及其监督和控制方面的研究挑战。第三,我们提出了未来几年将在实验室中探索的一系列研究问题。
OPNAVINST 13210.1C N98 2021 年 4 月 22 日 OPNAV 指令 13210.1C 来自:海军作战部长 主题:海军航空飞机航空电子安全系统政策 参考:(a) SECDEF 2006 年 6 月 22 日备忘录,减少可预防事故 (b) 海军航空和作战安全问题的优先排序和选择程序(海军审计服务报告 N2013-0001,2012 年 10 月 12 日) (c) DoDI 6055.19,航空危险识别和风险评估计划 (AHIRAP),2019 年 6 月 10 日 (d) 联合出版物 3-30,联合空中作战的指挥和控制,2019 年 7 月 25 日 (e) CJCSI 3170.01I,联合能力集成与开发系统,2015 年 1 月 23 日 (f) COMNAVAIRPAC/COMNAVAIRLANT INST 3025.1E (g) OPNAVINST 3750.6S (h) NAWCAD SWP4530-018,标准工作包:碰撞生存存储器/飞行数据记录器,2018 年 5 月 附件:(1) 安全系统合规矩阵标准 (2) 豁免请求样本 1.目的。a.更新海军和海军陆战队飞机中所需飞机航空电子安全系统的整合和安装政策。b.主要变化包括将安全系统合规矩阵的发布间隔从半年更改为每年发布一次,并简化了报废飞机的豁免流程和安全系统合规矩阵中的文档。2.取消。OPNAVINST 13210.1B。3.背景。1996 年 12 月,海军航空兵司令 (COMNAVAIRFOR) 担任航空委员会主席,并赞助人为因素质量管理委员会对飞机航空电子安全系统进行分析。该研究涉及飞行事故记录器、飞行数据记录器、全球定位系统、导航设备、近地距离
OPNAVINST 13210.1C N98 2021 年 4 月 22 日 OPNAV 指令 13210.1C 来自:海军作战部长 主题:海军航空飞机航空电子安全系统政策 参考:(a) SECDEF 2006 年 6 月 22 日备忘录,减少可预防事故 (b) 海军航空和作战安全问题的优先排序和选择程序(海军审计服务报告 N2013-0001,2012 年 10 月 12 日) (c) DoDI 6055.19,航空危险识别和风险评估计划 (AHIRAP),2019 年 6 月 10 日 (d) 联合出版物 3-30,联合空中作战的指挥和控制,2019 年 7 月 25 日 (e) CJCSI 3170.01I,联合能力集成与开发系统,2015 年 1 月 23 日 (f) COMNAVAIRPAC/COMNAVAIRLANT INST 3025.1E (g) OPNAVINST 3750.6S (h) NAWCAD SWP4530-018,标准工作包:碰撞生存存储器/飞行数据记录器,2018 年 5 月 附件:(1) 安全系统合规矩阵标准 (2) 豁免请求样本 1.目的。a.更新海军和海军陆战队飞机中所需飞机航空电子安全系统的整合和安装政策。b.主要变化包括将安全系统合规矩阵的发布间隔从半年更改为每年发布一次,并简化了报废飞机的豁免流程和安全系统合规矩阵中的文档。2.取消。OPNAVINST 13210.1B。3.背景。1996 年 12 月,海军航空兵司令 (COMNAVAIRFOR) 担任航空委员会主席,并赞助人为因素质量管理委员会对飞机航空电子安全系统进行分析。该研究涉及飞行事故记录器、飞行数据记录器、全球定位系统、导航设备、近地距离
前言 正确设计、安装和维护目视导航设备电气系统是民航安全、正常和高效的先决条件。为此,本手册提供了有关机场照明电气系统设计和安装的指导。机场照明电气系统包括其他电气装置通常不涉及的功能。因此,本手册不仅研究电气实践和装置的一般特征,还研究对机场装置具有特殊意义的特征。假设本手册的读者熟悉电路和一般设计概念,但可能不了解机场装置的某些特征,而这些特征在其他装置中较少遇到。值得注意的是,本手册中提供的材料旨在补充与电气装置相关的国家安全规范。本手册不涉及机场建筑物的电气系统。同样,本手册也不涉及电气系统的维护。有关后一个问题的指导,建议读者参阅《机场服务手册》(Doc 9137 号文件)第 9 部分 — 机场维护实践 。此外,本手册不涉及无线电导航辅助设备。这些辅助设备的电气系统设计和安装指导将在稍后制定。实施 本文中的材料旨在为各国实施附件 14 — 机场,第 I 卷 — 机场设计和运行 规范提供帮助,从而帮助确保统一应用这些规范。但是,设计师应该知道,当地的电气规范可能优先。未来发展 为了保持本手册的相关性和准确性,欢迎提出改进格式、内容或呈现方式的建议。任何此类建议或意见都将得到审查,如果认为合适,将纳入手册的定期更新中。定期修订将确保手册保持相关性和准确性。______________________对本手册的评论请发送至: 国际民用航空组织秘书长 999 Robert-Bourassa Boulevard Montréal, Québec H3C 5H7 Canada 本手册的下一版将包含未来 IEC 61820 标准(航空地面照明恒流串联电路的系统设计和安装要求,预计于 2018 年)的建议并与之保持一致。
31-3 飞行数据记录器(FDR) 根据 FAA 主最低设备清单,从 31-2 重新编号为 31-3。根据 GB 项 31-30-1,修订了法规要求的数字记录参数的减免。 33-2 驾驶舱/驾驶舱/驾驶舱和仪表照明系统 根据 FAA 主最低设备清单,从 33-4 重新编号为 33-2。根据 GB 项 33-10-1,增加了子项 1),修理间隔类别为 D。子项 2) 至 4) 符合 FAA 主最低设备清单。 33-12 机翼冰灯 已删除。FAA 主最低设备清单减免与 GB 项 33-40-5 一致。 33-17 地面近距离紧急逃生通道标志 修改子项3) 数量要求按国标33-50-1条由“-”改为“0”。 34-1 垂直速度指示器 按国标34-10-3条规定,将换班条件中的“VFR”替换为“VMC”。 34-2 气象雷达系统 删除。FAA主最低设备清单换班条件与国标34-40-1条一致。 34-4 非稳定磁罗盘 修改第一个换班条件,以表示与FAA主最低设备清单无变化。按国标34-20-3条规定,在第三个换班条件中增加“如有必要”。 34-5 导航设备 按国标34-50-1条规定修改。删除了第 34-24 项中涉及的子项 3)。34-7 航标灯 根据国标第 34-50-1 项进行修订。34-10 自动测向设备(ADF) 根据国标第 34-50-1 项将修理间隔类别由 C 修订为 D。34-11 无线电高度表 修改了子项 2),以表明与 FAA 主最低设备清单无变化。34-12 飞行指引系统 编辑性修改。删除了附文 a) 末尾的“和”
表格页码 1-1 历史机场项目资金 1.6 1-2 机场参考代码 1.9 1-3 机场燃油销售,2007 年 - 2012 年 1.16 1-4 罗克沃尔县受威胁和濒危物种 1.20 1-5 导航设备 1.23 1-6 仪表进近程序 1.25 区域公共机场设施 1.27 1-8 飞行员/飞机所有者调查结果 1.31 1-9 风覆盖摘要 1.32 1-10 历史和预测人口 1.38 1-11 家庭收入分配 1.39 1-12 运营收入和支出比较 1.40 2-1 美国现役飞行员历史和预测证书 2.9 2-2 美国现役飞机历史和预测 2.10 2-3 飞机运营预测摘要, 2012 – 2032 2.16 2-4 2012 – 2032 年按飞机类型划分的运营情况汇总 2.17 2-5 2012 – 2032 年按设计组划分的机队组合运营情况 2.18 2-6 2012 – 2032 年本地和巡回运营情况汇总 2.19 2-7 2012 – 2032 年年度仪表进近预测 2.20 2-8 2012 – 2032 年基地飞机预测汇总 2.21 2-9 2012 – 2032 年通用航空基地飞机机队组合 2.22 2.10 关键飞机对比 2.23 2-11 2012-2032 年航空预测汇总 2.25 3-1 机场参考代码 3.2 3-2 跑道长度要求 3.4 3-3 跑道保护区尺寸 3.11 3-4 机场设计标准 3.12 3-5 摘要 – 航空航站楼设施需求 3.24 4-1 备选的声明距离 4.5 4-2 建议的发展声明距离 4.38 5-1 第一阶段(0-5 年)发展成本 5.8 5-2 第二阶段(6-10 年)发展成本 5.9 5-3 第三阶段(11-20 年)发展成本 5.9 5-4 长期项目 5.10
4 运行概念 4.1 最低标准的分类和适用性 4.2 起飞 4.3 着陆 4.3.1 进近和着陆概念与目标 4.3.1.1 运行安全评估 4.3.1.2 主要和辅助导航方式及所需导航性能 (RNP) 4.3.1.3 使用 ICAO 标准导航设备 4.3.1.4 标准仪表进近程序 (SIAPS) 4.3.1.5 “大角度进近”和进近路径下降角限制 4.3.1.6 “正常机动”考虑 4.3.1.7 非正常事件或配置 4.3.1.8 复飞安全 4.3.2 ILS、GLS 或 MLS (xLS) 仪表进近操作 4.3.3 ILS、GLS 或 MLS (xLS) 以外的仪表进近4.3.4 DA(H),MDA(H)或RA的适用性4.3.4.1将DA(H)应用于I类4.3.4.2在I 4.3.4.3应用DA(H)或等效(即INTER MARKER)的应用中,将MDA(H)应用于类别II 4.3.4.4.4.4。4.3.5 能见度和 RVR 最低标准 4.3.6 着陆的能见度评估和 RVR 等效性 4.3.7 I 类运行和最低标准的一般要求 4.3.7.1 I 类定义、背景、分类和一般标准 4.3.7.2 “xLS”程序 - 最低标准不小于 200 英尺 DA(H) 4.3.7.3 “3D”RNAV 程序 - 最低标准不小于 200 英尺 DA(H) 4.3.7.4 “3D”RNAV 程序 - 最低标准不小于 250 英尺 DA(H) 4.3.7.5 “2D”RNAV 程序(例如基于 VOR/DME 的 RNAV 或基于 GPS 的 RNAV)- 最低标准不小于 250 英尺 MDA(H) 4.3.7.6 其他程序比 xLS 或 RNAV 更宽的距离(例如 VOR、NDB、LOC、后方航向 LOC 或 ASR 程序) - 最低标准不小于 250 英尺 DA(H) 4.3.7.7 其他特殊程序或授权 4.3.7.8 先前批准的 I 类运行或使用先前或新的 I 类标准 4.3.8 II 类要求 4.3.8.1 一般 II 类要求 4.3.8.2 II 类 DA(H) 的规范 4.3.8.3 II 类最低标准的资格不小于 100 英尺 DA(H)
1-1 历史机场项目资金 1.6 1-2 机场参考代码 1.9 1-3 机场燃油销售,2007 – 2012 1.16 1-4 罗克沃尔县受威胁和濒危物种 1.20 1-5 导航设备 1.23 1-6 仪表进近程序 1.25 区域公共机场设施 1.27 1-8 飞行员/飞机所有者调查结果 1.31 1-9 风覆盖摘要 1.32 1-10 历史和预测人口 1.38 1-11 家庭收入分配 1.39 1-12 运营收入和支出比较 1.40 2-1 历史和预测美国按证书划分的现役飞行员 2.9 2-2 历史和预测美国现役飞机2.10 2-3 2012 年至 2032 年飞机运营预测摘要 2.16 2-4 2012 年至 2032 年按飞机类型划分的运营摘要 2.17 2-5 2012 年至 2032 年按设计组划分的机队组合运营 2.18 2-6 2012 年至 2032 年本地和巡回运营摘要 2.19 2-7 2012 年至 2032 年年度仪表进近预测 2.20 2-8 2012 年至 2032 年基地飞机预测摘要 2.21 2-9 2012 年至 2032 年通用航空基地飞机机队组合 2.22 2.10 关键飞机对比 2.23 2-11 2012-2032 年航空预测摘要 2.25 3-1 机场参考代码 3.2 3-2 跑道长度要求 3.4 3-3 跑道保护区尺寸 3.11 3-4 机场设计标准 3.12 3-5 摘要 – 航空航站楼设施需求 3.24 4-1 备选的声明距离 4.5 4-2 建议的发展声明距离 4.38 5-1 第一阶段(0-5 年)发展成本 5.8 5-2 第二阶段(6-10 年)发展成本 5.9 5-3 第三阶段(11-20 年)发展成本 5.9 5-4 长期项目 5.10
量子物理和力学基础:量子理论是现代物理学的理论基础,它解释了原子和亚原子层面上物质和能量的性质和行为。物质和能量在该层面上的性质和行为有时被称为量子物理和量子力学。量子物理解释了原子和亚原子粒子以及最小的能量包(如光子)的工作原理。量子力学有助于解释原子尺度上发生的事情。量子力学的一些关键特性促成了技术突破。1) 叠加 - 亚原子粒子可以存在于两种状态之一或同时存在于两种状态中。2) 纠缠 - 分离的亚原子粒子瞬间相互响应的能力。3) 不确定性 - 我们无法在任何时间点知道量子粒子的精确位置和状态。量子技术研究指导了激光、磁共振成像 (MRI)、超导磁体、发光二极管、晶体管和半导体/微处理器以及电子显微镜等技术的发展。量子力学还为计算、精确测量、密码学和不可破解通信等关键领域的巨大飞跃创造了潜力。量子信息科学 (QIS):量子信息科学是信息理论和量子物理学的结合,旨在开发新的、强大的信息处理方式。量子信息科学有许多可能的应用,其中一些已经投入使用或处于早期/中期测试阶段——例如卫星通信和高灵敏度传感器。其他一些应用有可能在未来 5-10 年内成熟。一些潜在的应用包括量子传感器,它可以发现新的地下石油和矿藏,或探测传统设备不够灵敏而无法辨别的核爆炸地震信号。新的便携式量子导航设备已经在接受严格测试,即使 GPS 网络被干扰或中断,它也能使士兵和武器平台找到方向。 QIS 还可以帮助开发量子和传统加密方法都无法破解的通信系统。中国已经在两座城市之间运营了一个安全的量子通信网络,并展示了其运行情况。1 量子计算:75 多年来,计算机的基本架构基本保持不变。先进材料和计算机科学的研究继续推动着经典计算速度和能力的极限。然而,一段时间以来,经典计算的物理极限已经显而易见。量子计算目前正处于上市前阶段,但它的成熟有望在计算速度和性能上实现超越传统计算的非凡提升,在某些方面