在预防动脉粥样硬化心血管疾病(ASCVD)中,血液低密度脂蛋白胆固醇(LDL-C)水平越高,越好,越越好。换句话说,LDL-C水平是因果标记。另一方面,低血液高密度脂蛋白胆固醇(HDL-C)的水平通常很差,但过高的水平不一定很好。此外,在接受LDL-C降低疗法的患者中增加HDL-C水平的治疗并不一定会减少ASCVD。因此,HDL-C已从其荣誉位置被删除为“良好的胆固醇”,而HDL-C水平现在被认为仅仅是标记1)。胆汁固醇酯转移蛋白(CETP)抑制剂似乎通过增加HDL而失去了“ ASCVD预防剂”的形象。但是,他们里面仍然有生命!临床试验和孟德尔随机分析的结果将注意力集中在CETP抑制剂的策略上,不仅可以增加HDL,还要减少载脂蛋白B(APOB)含有含脂蛋白,这导致了它们作为LDL降低剂的发育。由于CETP将HDL颗粒中的胆固醇酯转移到非常低密度脂蛋白(VLDL)中的含APOB的脂蛋白和甘油三酸酯中,因此其抑制作用减少了含有蛋白蛋白的胆固醇的含量。在本期刊中,Harada-Shiba等人。研究了102名日本受试者在双盲,随机,受控的II期试验中,在102名日本受试者中,CETP抑制剂的功效,安全性和耐受性。与安慰剂组相比,持续时间为8周,肥胖剂量为2.5、5和10 mg/天。药代动力学。所有患者已经接受了他汀类药物治疗(Atorvastatin 10或20 mg/天或rosuvastatin 5或10 mg/天),使研究设计
客户还必须考虑投资,以测试和验证在传统服务器之上运行的业务应用程序。即使客户从Microsoft购买补丁程序,大多数应用程序供应商都不会支持这些补丁,因为他们无法测试补丁不会影响其应用程序。测试和验证Microsoft自定义补丁的责任位于客户身上。客户还必须承担由于与补丁不兼容而导致的申请中断风险。这导致运营成本和风险增加。
热量限制和间歇性禁食延长模型生物的寿命和健康状况,并改善人类健康。天然多胺精子素与自噬的增强,治疗保护以及跨物种边界的心血管和神经退行性疾病的发生率相似。在这里,我们询问热量限制和禁食的细胞和生理后果是否取决于多胺代谢。我们报告说,在酵母,苍蝇,小鼠和人类志愿者的禁食或热量限制方案下,精子水平升高。内源性精子合成的遗传或药理阻滞减少了禁食诱导的酵母,线虫和人类细胞的自噬。此外,在体内扰动多胺途径,消除了寿命和健康范围的延伸效应,以及禁食的心脏保护和反性后果。从机械上讲,精子素通过自噬诱导和翻译调节剂EIF5A的无诱导介导了这些作用。总而言之,多胺 - 抑制轴是一种系统发育保守的代谢控制中心,用于禁食介导的自噬增强和寿命。
作为 AMC 的铸造准备解决方案 (CSR) 的一部分,美国铸造协会在国防后勤局 (DLA) 资助的研究期间开发了铸造金属的应变寿命疲劳数据库。该数据库包含单调和循环属性数据,以及各种铸铁(包括灰铸铁、球墨铸铁、蠕墨铸铁和白铸铁以及一些铝合金)的相关化学分析、截面厚度、成型工艺和微观结构数据。数据库中的疲劳数据是根据 ASTM 标准 E606 开发的,寿命范围为 100 次循环至 500 万次循环,拉伸数据是使用 ASTM 标准 E8 测试棒开发的。当前项目将这些经过验证的应变寿命疲劳数据整合到凝固和工程建模软件中,以帮助工程师设计铸造部件,并使用制动转子的铸钢轮毂作为案例研究,该轮毂在轻轨应用中用螺栓固定在车轴上(上图)。
含摘要黄素单加氧酶(FMO)是一种保守的异种生物酶家族,包括多种寿命干预措施,包括线虫和小鼠模型。以前的工作支持秀丽隐杆线虫FMO-2通过重新布线内源代谢来促进寿命,抗压力和健康状态。但是,有五个秀丽隐杆线虫FMO和五个哺乳动物FMO,尚不清楚促进长寿和健康益处是否是该基因家族的保守作用。在这里,我们报告说,秀丽隐杆线虫FMO-4的表达促进了饮食限制和MTOR抑制下游的寿命延伸和偏花应力抗性。我们发现,仅皮下注射中FMO-4的过表达就足以容纳这些好处,并且该表达显着修饰了转录组。通过分析基因表达的变化,我们发现与钙信号相关的基因被显着改变了FMO-4的下游。强调了钙稳态在该途径中的重要性,FMO-4过表达的动物对Thapsigargin敏感,Thapsigargin是一种ER胁迫,可抑制从细胞质到ER腔的钙通量。这种钙/ FMO-4的相互作用通过数据巩固,表明用小分子或遗传学调节细胞内钙可以改变FMO-4的表达和/或与FMO-4相互作用,以影响寿命和抗压力。进一步的分析支持一条途径,其中FMO-4调节激活转录因子-6(ATF-6)下游的钙稳态(ATF-6),其敲低引起并需要FMO-4表达。一起,我们的数据将FMO-4识别为延长的基因,其作用与已知的寿命途径和钙稳态相互作用。
最近的研究发现,脉冲充电协议可以延长锂离子电池的循环寿命。鉴于此,已经进行了这项研究,以研究脉冲充电对锂离子电池容量保留和内部电阻的影响。 棱柱形NMC锂离子电池用使用的脉冲电流恒定电压(PPC-CV)充电模式循环,并且它们的能力已与常规恒定恒定电流恒定电压(CC-CV)充电进行了比较。 开发并实施了一种新颖的方法,以在定义的充电(SOC)窗口内执行脉冲充电配置文件。 测试对象在4周的间隔内连续循环,并进行了标准化参考性能测试(RPT)的介入,以计算标准容量和内部电阻。 另外,还进行了增量能力分析(ICA)和电化学阻抗光谱(EIS)以进行分析。鉴于此,已经进行了这项研究,以研究脉冲充电对锂离子电池容量保留和内部电阻的影响。棱柱形NMC锂离子电池用使用的脉冲电流恒定电压(PPC-CV)充电模式循环,并且它们的能力已与常规恒定恒定电流恒定电压(CC-CV)充电进行了比较。开发并实施了一种新颖的方法,以在定义的充电(SOC)窗口内执行脉冲充电配置文件。测试对象在4周的间隔内连续循环,并进行了标准化参考性能测试(RPT)的介入,以计算标准容量和内部电阻。另外,还进行了增量能力分析(ICA)和电化学阻抗光谱(EIS)以进行分析。
可靠性工程已成为功率电力(PE)的一个相对较新的分支,该分支支持快速进步,并具有明显提高的可靠性评级,以实现高级电力电子转换器系统(PEC)。pecs在越来越严重的温度纤维中运行,即在极端温度水平之间的快速循环。因此,作为PEC的基本组成部分,功率半导体模块的可靠性要求显着增加。电源模块制造商一直在研究新的电源模块设计和包装技术,以增加限制和延长future中功率模块的寿命,随后也可以在可靠性方面进行高性能[1]。将来,可靠性方面必须包括在新型的多域优化工具中,以进一步改善PEC的设计。朝着该目标的第一步是允许将系统组件的寿命模型集成到设计过程中。功率模块的可靠性代表了一个高度的跨学科主题,因为它需要在不同领域具有更深入的知识:1)功率模块的机械设计和热能功能,2)失败的物理学,由Ma terial Science解释,以及3)Power Electronics作为其应用程序文件。已经研究了终生估算功率模块的预测技术和复杂模型,并受到了越来越多的关注。这些模型中的大多数是用于表征功率模块功率循环功能的经验寿命模型,例如[2,3]中介绍的寿命模型。现有Power模块的制造商拥有详细的产品数据,是开发和验证功率模块终生模型所需的专业知识和资源,已经进行了重大调查。实际上,它们仅基于经验和统计分析,对长期加速循环测试中获得的大型数据库。
一旦达到寿命终止(EOL),预计可再生能源(PVS)面板将大量采用可再生能源(PVS)面板。尽管具有最高的体现能量,但呈现的光伏回收却忽略了PV细胞中发现的高纯度硅。在此,开发了一种可扩展且低的能量工艺,以通过避免能源密集型高温过程的过程从EOL太阳能电池板中恢复原始的硅。提取的硅被升级,形成与基于货运硅相当的性能的锂离子电池阳极。阳极在200个周期后保持87.5%的能力,同时保持高库仑效率(> 99%)为0.5 a g -1充电率。这个简单可扩展的过程将EOL - 极性面板升级为高价值的基于硅的阳极可以缩小净零废物经济性的差距。
Naumann, M.、FB Spingler、A. Jossen。2020 年。商用 LiFePO 4/石墨电池循环老化分析与建模。《电源杂志》451(3 月)227666。DOI:10.1016/j.jpowsour.2019.227666。Naumann, M.、M. Schimpe、P. Keil、HC Hesse、A. Jossen。2018 年。商用 LiFePO 4/石墨电池日历老化分析与建模。《能源存储杂志》17(6 月)153–169。DOI:10.1016/j.est.2018.01.019。