摘要:雷帕霉素 (mTOR) 激酶的机制靶点是促进健康和延长寿命的首要药物靶点之一。除雷帕霉素外,只有少数其他 mTOR 抑制剂被开发出来并被证明能够减缓衰老。我们使用机器学习来预测针对 mTOR 的新型小分子。我们选择了一种小分子 TKA001,基于对高靶向概率、低毒性、良好的物理化学性质和更好的 ADMET 特征的计算机预测。我们通过分子对接和分子动力学对 TKA001 结合进行了计算机建模。TKA001 在体外可有效抑制 TOR 复合物 1 和 2 信号传导。此外,TKA001 在体外可抑制人类癌细胞增殖并延长秀丽隐杆线虫的寿命,这表明 TKA001 能够在体内减缓衰老。
WPT系统的耦合系数公式为:$$ k = \ frac {m} {\ sqrt {l_t \ times l_r}} $$ ..WPT的效率随耦合系数的提高。当一个线圈的所有磁通线切开第二个线圈的所有磁通线时,就会发生完美的耦合(k = 1),从而导致相互电感等于两个个体电感的几何平均值。这会导致满足关系$$ \ frac {v_1} {v_2} = \ frac {n_1} {n_2} $$的感应电压。图11提出了一种动画可视化,展示了磁通密度对发射器和接收器线圈之间气隙距离变化的响应。参数AC磁研究生动地证明了反相关关系:随着气隙距离的增加,磁通量密度达到二次线圈的降低,反之亦然。
抽象的背景寿命和韧性是更可持续的牲畜生产的两个基本特征。这些特征密切相关,因为弹性动物往往具有更长的寿命。兔子寿命增加的有趣标准可能基于其肠道微生物组提供的信息。肠道微生物组对于调节健康并在免疫系统的发展中起着至关重要的作用。这项研究的目的是研究具有不同寿命的动物是否具有不同的微生物特征。我们从95的软粪便中测序了16S rRNA基因。首先,我们比较了两条具有不同寿命的母兔线。根据寿命标准建立的标准寿命母系线(A)和母系线(LP):女性的小型女性为25个奇偶族,平均每平等的平均多产量为9或更多。第二,我们比较了来自LP的两组动物的肠道微生物群,其寿命不同:死亡/被两个或以下的均等(LLP)和超过15个平等(HLP)(HLP)的女性淘汰。在线A和LP之间观察到了α和β多样性的结果差异,而部分最小二平方判别分析(PLS-DA)显示了对动物的高预测准确性(> 91%),以划分为Ver-SUS LP(146 Amplicon序列变体(ASV))。PLS-DA还显示出很高的预测准确性(> 94%)将动物分类为LLP和HLP组(53 ASV)。有趣的是,PLS-DA中确定的一些最重要的分类单元与这两种比较(Akkermansia,Christensenellaceae R-7,未培养的Eubactereae等)共有,据报道与弹性和寿命有关。结论我们的结果表明,第一个平等肠道微生物组的轮廓在两个兔子母系线(A和LP)之间有所不同,并且在较小程度上,在具有不同寿命(LLP和HLP)的LP动物之间有所不同。几个属能够将动物与具有不同寿命不同的两条线和动物区分开,这表明肠道微生物组可以用作寿命的预测因素,也可以用作这些性状的选择标准。
几次学习(FSL)的目的是学习如何从少数培训检查中认可图像类别。一个核心挑战是,可用的培训检查通常不足以确定哪些视觉效果是所考虑类别中最具特征的。为了应对这一挑战,我们将这些视觉特征组织成方面,从直观地将相同的特征分组(例如,与形状,颜色或纹理相关的功能)。这是从以下假设中的动机:(i)每个方面的重要性因类别而异,并且(ii)可以从类别名称的预训练的嵌入中预测Facet的重要性。尤其是我们提出了一种自适应的相似性度量,依靠对给定类别的预测的重要性权重。该措施可以与各种现有的基于度量的甲基甲化组合使用。在迷你胶原和CUB上进行的实验表明,我们的方法改善了基于公制的FSL的最新方法。
摘要:在当前的工作中,设计,制造和测试了使用纳米复合材料和合成材料的新人造人类软心和人造心脏瓣膜的开发模型。检查了制造的机械人造心脏瓣膜,以确定每种类型的最佳使用寿命。通过在每个产生的值上使用瞬态重复并连续施加血压来模拟每个脉冲周期中自然心脏中发生的舒张期和收缩压,从而实现了疲劳寿命。获得的结果表明,实施了新一代软性人造心脏的3D打印作为永久替代品的替代品,以替代高成本可用的临时植入物机械心脏,该植入物可能会超过价格和数十万美元的价格,其工作寿命不超过五年。随着阀门运动部位运动的复杂性,使用不同材料和设计的生产人造阀获得的疲劳安全系数降低。在使用单向式扁平,简单运动的阀(如单叶型阀门)时,获得了最高速率,其中所有使用的材料都适合于生产此类阀门。达到了最高的安全系数(15)。使用高度柔韧性和强大的PSN4纳米复合材料来制造二尖瓣三叶叶阀(厚。= 1.0 mm)时,记录了最低速率。使用相同的类型和阀门时,此值降至0.99,但厚度等于0.5 mm。可以在这里注意到,唯一适合于这种人造阀类型的制造的是纳米复合材料聚醚酰亚胺/硅胶橡胶带有纳米二氧化硅(PSN4),而其他使用的材料失败了,因为疲劳因子值小于1。 div>。 div>。 div>。该材料的使用寿命约为9200 x 106周期,相当于大约290年,其次是SIBSTAR 103,默认年龄为209.6 x 106周期或9年。
一个分子生物科学研究所,纳维·格拉兹(Nawi Graz),格拉兹大学,格拉兹,奥地利; B Biotechmed-Graz,格拉兹,奥地利; C卓越领域BioHealth,格拉兹大学,奥地利格拉兹大学; D研究与技术基金会分子生物学与生物技术研究所 - 希拉斯,希腊,希腊; e希腊赫拉克里昂克里特大学科学与工程学院生物学系; f奥地利格拉兹医科大学心脏病学系; G,格拉兹大学,奥地利格拉兹大学药学化学科学研究所G; h马里博尔大学,马里波尔大学医学院生理学研究所;斯洛文尼亚; I基础科学司,希腊赫拉克里翁克里特大学医学院; J Center de Recherche des Cordeliers,ÉquipelabelliséeParla Ligue Conte le cancer,deParisité大学,索邦内大学,INSERM U1138,法国,法国大学,法国,法国,法国; k代谢组学和细胞生物学平台,法国维勒维夫大学的古斯塔夫·鲁西癌中心,法国维勒维夫大学; L Institut du Cancer Paris Carpem,生物学系,HôpitalEuropéenGeorges Pompidou,AP-HP,巴黎,法国,
值得注意的是,深海贻贝中的甲烷营养细菌 - 钥匙共生体 - 在暴露的浅水贻贝中占主导地位。这种转移与与免疫反应和内吞作用有关的基因表达的变化相关,突出了贻贝及其共生体之间的协同关系。
更广泛的背景地球的锂储量既有限制和分布不均,在满足全球电气化驱动的不断增长的需求方面提出了重大挑战。鉴于锂离子电池(LIB)的局限性,探索替代电池技术已经变得至关重要。钠离子电池(SIBS)代表了一种有希望的替代方案,由于丰富的钠资源及其低成本而引起了对储能系统和低速电动汽车应用的关注。含钠的过渡金属分层氧化物,普鲁士蓝色类似物和聚苯二醇化合物是SIBS的阴极材料的主要类别。中,具有稳健且稳定的P – O共价键具有固有的安全性,高氧化还原电位以及化学和热稳定性,具有稳定和稳定的Polyanion型阴极。然而,[PO 4]的重3D框架和绝缘特性导致容量递送有限(O 110 mA H G 1),低电子电导率和缓慢的反应动力学,这不可避免地导致电化学性能差。结果,具有高容量,循环寿命和快速反应动力学的高级阴极材料的发展具有重要意义,但它仍然是一个巨大的挑战。在这里,设计和优化了嵌入多孔碳框架中的集成聚苯式氧化物阴极,以增强Na-ion储存性能,该储存性能远远超过了NA 3 V 2(PO 4)3(PO 4)3(PO 4)3和出色的快速充电能力的理论能力,并在半层和AH级别的袋中的较长的循环寿命以及较长的循环寿命。此外,我们通过结合先进的表征技术和理论计算,例如原位X射线衍射,球形像差校正的透射电子显微镜技术,X射线吸收接近边缘结构,密度的功能理论理论计算,和comsol ysol ysimssics yourculation columpulations offeculation和comsol ysimiss,我们 揭示了这种集成阴极的自发激活和传输机制。 这项工作表明,集成阴极中的协同作用可以推动高级阴极材料的开发,以进行高能密度,快速充电和长寿命钠离子电池。揭示了这种集成阴极的自发激活和传输机制。 这项工作表明,集成阴极中的协同作用可以推动高级阴极材料的开发,以进行高能密度,快速充电和长寿命钠离子电池。揭示了这种集成阴极的自发激活和传输机制。这项工作表明,集成阴极中的协同作用可以推动高级阴极材料的开发,以进行高能密度,快速充电和长寿命钠离子电池。
最少处理的全谷物(例如糙米,小麦,拼写,大麦,小米,黑麦,玉米,荞麦)豆类(例如鹰嘴豆,扁豆,大豆,黑色,黑色,肾脏,肾脏,pinto,pinto,pinto,pinto,navy,cannellini,cannellini,adzuki,adzuki,adzuki,fava beans andernd nuts nuts nuts nuts nuts nuts nuts nuts,榛子,山核桃,澳洲坚果,巴西和松子);种子(例如亚麻籽,芝麻,向日葵,南瓜和奇亚种子);低血糖水果(例如草莓,覆盆子,黑莓,蓝莓,樱桃,猕猴桃,羽木,李子,桃子,苹果,苹果,葡萄柚,橙子);不饱和脂肪(例如,维尔金橄榄油,鳄梨)。