航天器寿命延长、碎片清除、空间操作自主性和机器人技术方面的技术进步将颠覆航天器设计、采购、发射、操作和维护的传统模式。专为空间服务、装配和制造 (ISAM) 设计的新一代航天器正引领这一潮流走向新的太空经济。在未来几年内,航天器加油将得到演示,商业加油站可能会出现,以提高在轨机动性和轨道异常恢复能力。在接下来的几年里,定期进行在轨硬件升级的航天器(商业、民用和军用卫星部门确定的一项战略能力)可能会变得司空见惯。当前的太空企业运营已经证明,即使没有 ISAM,也能持续运营、执行任务和开展业务,但 ISAM 有望提高弹性和灵活性、加快技术进步,并扩大地球同步轨道 (GEO) 以外的空间生态系统。
本文公开的创新是添加剂的形式,该添加剂由含有环氧树脂、极性稀释剂、腐蚀抑制剂和粘合促进剂的微胶囊化修复剂组成。微胶囊可以配制成水性和溶剂型液体环氧涂料、富锌底漆、粉末涂料和熔接环氧涂料。一旦完全固化,这些涂层的损坏会使微胶囊破裂,从而将修复剂释放到损坏部位,在那里聚合、密封损坏边缘、延迟底切并促进涂层粘合性的维护。改进的粘合性维护使涂层的使用时间更长,从而最大限度地减少了重新涂装和维护所需的程度以及由于资产使用寿命内的停机而导致的生产力损失。下面提供了说明与在腐蚀环境中使用的涂层的寿命延长相关的成本节省的示意图:
本文公开的创新是添加剂的形式,该添加剂由含有环氧树脂、极性稀释剂、腐蚀抑制剂和粘合促进剂的微胶囊化修复剂组成。微胶囊可以配制成水性和溶剂型液体环氧涂料、富锌底漆、粉末涂料和熔接环氧涂料。一旦完全固化,这些涂层的损坏会使微胶囊破裂,从而将修复剂释放到损坏部位,在那里聚合、密封损坏边缘、延迟底切并促进涂层粘合性的维护。改进的粘合性维护使涂层的使用时间更长,从而最大限度地减少了重新涂装和维护所需的程度以及由于资产使用寿命内的停机而导致的生产力损失。下面提供了说明与在腐蚀环境中使用的涂层的寿命延长相关的成本节省的示意图:
美国是世界第二大能源消费国和二氧化碳 (CO 2 ) 排放国,但它也是主要的技术和创新领导者,清洁能源投资的快速增长使其成为可再生能源、电池、电解器和热泵制造以及电动汽车 (EV) 销售的世界领先市场。它也是世界上最大的生物燃料生产国。美国正在经历强劲的经济增长,同时排放量下降和效率提高。预计 2023 年,能源效率改善率将达到 4%。这也是本十年来每年在 IEA 净零情景和 COP28 承诺将全球能源强度进展从 2% 翻一番至 4% 的全球水平。美国推动了对可再生能源产能、核寿命延长和新建以及低碳燃料的大量投资。国内煤炭使用量已降至历史最低水平。2023 年,美国能源燃烧产生的二氧化碳总排放量下降了 4%,而经济增长了 2.5%。排放量减少的三分之二来自电力部门。
工厂功率输出提高至 740 MWe(目标)。更坚固的遏制系统和增强的被动安全功能(例如,更厚的壁、钢衬里)。增强严重事故管理 增加紧急热量去除系统 (EHRS) 作为安全系统。提高停机性能,以应对更大的冷却剂损失事故 (LOCA) 裕度。升级防火系统,以满足当前加拿大和国际标准。遵循尽可能低的合理可行 (ALARA) 原则,增加设计功能,以改善对工人和公众的环境保护。自动化和单元化的备用电源和水系统。根据概率安全评估 (PSA) 研究,其他改进可满足与加拿大和国际标准一致的更高安全目标。增加反应堆停堆次数,提高停堆覆盖率和效率。电厂寿命为 60 年,燃料通道和进料器等关键设备在中期寿命延长一次。容量系数为 90%(寿命)
ARFVTP 协议 75,000 美元及以下委托给执行董事 拟议业务会议日期 2020 年 6 月 10 日 同意讨论 业务会议主持人 Robin Goodhand 所需时间:5 分钟 请选择一个列表服务。EPIC(电气计划投资费用)议程项目主题和说明:Anzode:用于加州电气客户电源备份的锌电池拟议决议批准与 Anzode Inc. 签订的协议 EPC-19-042,以获得 1,747,721 美元的赠款,用于资助原型设计工作,向锌基电池电极添加一种新型稳定化合物,从而减少电极退化。这种稳定剂可以轻松集成到现有的制造工艺中,预计可以使电池寿命延长一倍。该系统将接受测试,以展示其在住宅和商业应用中的性能。工作人员还要求采纳工作人员的决定,即此行动不受 CEQA 的约束。
皮内拉斯县被视为城市固体废物管理行业的领导者。WTE 设施仍然是该国最大的设施之一。目前,WTE 是垃圾填埋场处理的最有效替代方案,同时产生收入流,为整个固体废物管理系统的运营提供资金,并为未来的资本项目提供储备。储备金目前正在重新投资于 WTE 设施,以翻新和恢复其像新的一样的运营能力,并将其使用寿命延长 25 年。此外,在过去 30 年里,处置费率一直保持不变。综合固体废物管理系统包括:WTE 设施、垃圾填埋场、渗滤液和地表水处理业务、为居民提供免费的家用电子产品和化学品移动收集和处置、为企业提供的商业废物评估和减少工作浪费计划、利尔曼社区的收集服务、免费的回收投放地点以及广泛的宣传和教育计划。
在过去二十年中,电力系统面临着越来越苛刻的运营要求。这些具有挑战性的运营条件是由多种因素造成的,包括负荷增长、基础设施老化、分布式能源 (DER) 的渗透率不断提高、经济电气化以及脱碳等政策举措。电力系统及其组件必须提供高度的运营灵活性,以缓解这些挑战。例如,风能和太阳能等间歇性 DER 的普及增加了对水电站等传统发电资产的需求,以应对突然的负荷发电不平衡。水电站对灵活性的要求越高,磨损就越大,可能会缩短水电涡轮机的使用寿命。为了减少水电站跟踪调度信号突然变化的需要,我们研究了它们与储能系统 (ESS;“基于 ESS 的混合”) 的联合运行。我们的分析侧重于通过基于 ESS 的混合来延长水电站的使用寿命。水电涡轮机(尤其是弗朗西斯涡轮机)的磨损使用寿命损失概念建模,该概念基于涡轮机因各种运行周期而遭受的损坏。然后,我们表明使用 ESS 抵消一些高变化可以延长水电站的剩余寿命。为了证明这一点,我们为这项工作开发了一些建模工具:(1)涡轮机及其调速器各个部件的动态模型;(2)一种控制策略,将缓慢变化的调度信号分配给水电机组,将快速变化的信号分配给 ESS,以使总功率请求保持不变;(3)财务分析模型,以量化这种框架的经济效益。我们使用我们开发的模型来分析实际水电站的调度模式,该水电站的功率输出为 50 MW,水头高度为 152 m。这项工作表明,基于 ESS 的混合可以将水电站的寿命平均延长 5%。然后使用这种寿命延长来估计与水电站维护和更换相关的成本延期的经济效益:平均为 360 万美元。针对 ESS 的大小和涡轮机的成本进行了敏感性分析,以显示收益在涡轮机成本和 ESS 大小范围内的变化。至关重要的是,将损害减少和寿命延长与其他 ESS 价值流(例如提供辅助服务)叠加在一起可以大大增加基于 ESS 的混合的经济效益。当多个价值流叠加并共同优化以获取最大收益时,与适当大小的 ESS 相关的更高成本将更具经济意义。未来将在未来的工作中探索这一维度。
美国太空军 (USSF) 和 NASA 正在寻求能够增强太空能力的变革性技术。这些技术必须能够实现按需服务,例如轨道转移、机动、能力增强、寿命延长、加油、维修、碎片清除、制造和组装。这些服务可以通过在轨道上而不是在地面上按需组装和制造航天器来实现。确定合作推进使能技术的途径对于确保实现这些目标至关重要。本文介绍了一项多学科努力,旨在构建技术路线图,该路线图将在 10 年内建成一个轨道小型卫星工厂。工厂概念是围绕关键使能技术构建的,例如混合增材制造,它采用熔融长丝制造、激光焊接和线嵌入。还评估了插入工厂的相对技术和制造准备情况。还确定了在未来 3 到 4 年内推进这些技术的合作开发途径。虽然该工厂专注于小型卫星制造,但这项基础工作可以扩大规模,以制造更大的航天器系统。
2. ISAM 是指在轨道上、在空间物体和天体表面以及在这些区域之间移动时使用的一组能力。ISAM 的“服务”方面包括航天器首次发射后在空间中的检查、寿命延长、维修、加油或改造等活动,包括但不限于:目视获取、会合和/或近距操作、对接、停泊、重新定位、升级、重新定位、脱离对接、脱离停泊、释放和离开、再利用、轨道运输和转移以及及时收集和清除碎片。2 这些活动通常包括在“客户”航天器附近进行机动和操作的过程,3 一组通常称为会合和近距操作 (RPO) 的活动。“服务”一词还用于描述航天器从一个轨道到另一个轨道的运输,以及碎片的收集和清除。 “组装”是指利用预制部件建造空间系统,“制造”是将原材料或回收材料转化为空间中的部件、产品或基础设施。4