• 混合粘合尺寸:~13 x 29 毫米(0.45x 掩模版) • 顶部的逻辑芯片可改善散热效果 • N5 XCD/CCD 堆叠在 N6 基片(IOD)上 • 垂直带宽高达 17TB/s
2. 评级依据 10 CFR 第 429 部分 B 子部分 § 429.43 中定义的抽样要求确定,方法是选择单元进行测试或应用 10 CFR 第 429.70 部分中定义的替代效率确定方法 (AEDM)。认证评级必须等于或优于 ENERGY STAR 规范要求。只要符合上述和 10 CFR 第 431.92 部分中的定义,测试或模拟单元的结果可用于认证基本模型中的其他模型变体。此外,基本模型中的所有单个模型必须按照第 429 部分中的 DOE 规定具有相同的认证评级,并且此评级必须用于所有制造商文献、认证产品清单和符合 DOE 节能标准的认证。
随着通信信息网络的进步,数字网络家电和便携式信息终端设备市场不断扩大,网络设备逐渐取代个人电脑占据主导地位。要实现这个IT社会,需要两个要素:1)可以随时随地获取最新信息、图像、音频等的便携式信息终端;2)可以即时传输大量信息的高速通信信息处理系统。满足这一需求的最终解决方案是系统LSI(SoC:片上系统)1,它使由多个LSI芯片组成的系统实现为单个芯片。SPA(硅平台架构)就是其中一种解决方案。但是,由于客户要求很高,因此在很多领域中,以晶圆工艺技术为代表的基本技术的开发难度都很高。因此,需要时间来实施开发和满足客户交付需求的战略。在此背景下,作为实现这种封装技术的方法,SiP(系统级封装)1 正受到关注。尤其是,MCP 可以实现快速实现新设计、小尺寸和薄型格式的封装,并且将多个芯片集成在一个封装中,因此人们正在认真考虑这种封装。
电信提供商希望产品在现场操作期间能够可靠地运行。实现预期的硬件可靠性需要多种因素的融合。特定材料的加入对可靠性能做出了重大贡献,这些材料在设备生命周期的设计和制造阶段具有极强的耐腐蚀性和静电放电 (ESD) 安全性。必须对产品进行环境保护,以确保产品在全球存储和运输过程中保持设计的可靠性。收到或存储的产品会出现材料腐蚀的情况,并且我们的产品存在许多“不太理想”的存储条件(例如,没有空调或环境控制的客户仓库)。我们已经制定了一项策略,通过使用 Static Intercept* 包装平台来缓解这些问题。该技术可同时保护设备和组件免受腐蚀、潮湿和 ESD 的影响,使用单一包装材料可长达七年或更长时间。静态拦截技术目前可提供最长的防腐蚀和防 ESD 退化保护,我们将在解决这些存储问题方面讨论其技术优点。© 2006 Lucent Technologies Inc.
目前,美国国家航空航天局 (NASA) 的许多电子系统正在考虑使用高可靠性版本的商用现货区域阵列封装 (COTS AAP) 技术。尽管许多此类先进电子封装通常在封装内使用底部填充材料,包括倒装芯片 (FC) 芯片下方;但印刷电路板 (PCB) 级别可能还需要全部或部分角落底部填充材料,以提高组装可靠性,特别是在机械和疲劳负载下。由于 NASA 对材料和可靠性有严格的要求,因此对于使用底部填充材料的测试验证指南极其有限。为了准备开发测试矩阵和实施,我们对文献和当前实践以及可靠性问题进行了调查。
摘要 — 量子计算机为特定的计算密集型经典问题提供了更快的解决方案。然而,构建容错量子计算机架构具有挑战性,需要集成多个量子位和优化的信号路由,同时保持其量子相干性。由于各种元件之间的材料和热力学不匹配,在平面单片器件架构中实验实现具有多种功能组件的量子计算机具有挑战性。此外,它需要复杂的控制和路由,导致寄生模式和量子位相干性降低。因此,可扩展的中介层架构对于在保持量子位相干性的同时合并和互连复杂芯片内的不同功能至关重要。因此,异构集成是扩展量子位技术的最佳解决方案。我们提出了一种异构集成量子芯片光电子中介层作为高密度可扩展量子位架构的解决方案。我们的技术可实现大批量生产,并为片上、芯片到芯片以及低温到外界的互连提供新颖的光学 I/O 解决方案。
5.1. 用户 I/O................................................................................................................................................ 17 5.2. 电源引脚................................................................................................................................................. 18 5.3. 存储器接口................................................................................................................................................. 19 5.4. DDR 接口................................................................................................................................................. 19 5.5. 时钟引脚................................................................................................................................................. 20 5.6. 专用 I/O 组引脚.................................................................................................................................... 20 5.7. XCVR 接口.................................................................................................................................................... 22
SIP 正在成为新的 SOC • 模块化方法与单片方法 • 并非每个逻辑功能 (IP) 都需要在相同的工艺节点 (HI) 中进行设计 • 利用小芯片形式的 IP • 目前小芯片集成在硅中介层上;薄膜层压板正在兴起 • 包括最新的 IC 封装 2.5D、3D、FOWLP 技术 • 下一代所需的电路板设计专业知识
在全球谷物产量不断增加的背景下,伴随着各种农药,除草剂,杀菌剂和其他化学农药的大量投资。它引起了不可避免的环境问题和食品安全问题。当前的研究表明,使用环糊精及其衍生物保护农药可以显着减少污染环境的农业化学数量。使用环糊精的空腔特性,我们可以参考药物分子生产环糊精和环糊精聚合物形成包含化合物的类似方式。总体而言,β-环糊精及其衍生物被用作一种新的农药赋形剂,以提高农药的稳定性,防止其氧化和脱位,改善农药的溶解度和生物利用度,减少药物的毒性副作用,并掩盖药物的食物。在这篇综述中,我们着重于总结β-环糊精及其在农药和其他领域中的衍生物的最新研究进展,并在各种应用中提供了β-环糊精聚合物的系统分类,以及新的Shinthesis方法和技术。最后,预见了环糊精样聚合物的未来发展,并深入讨论并解决了研究引起的问题。
范围和章节大纲 本章旨在简要概述晶圆级封装 (WLP),包括晶圆级芯片规模封装 (WLCSP) 和扇出型封装,作为这些技术未来发展路线图的背景。本文并非旨在提供详细的历史,也不是与这些技术相关的所有可能的结构、工艺和材料的详细描述。在有关该主题的各种文章和书籍中可以找到更详细的信息。本章试图回顾 WLP 技术迄今为止的发展,并预测未来的需求和挑战。 晶圆级封装是指在晶圆仍为晶圆时对芯片进行封装,可以单独封装,也可以与其他芯片或其他组件(例如分立无源器件)或功能组件(例如微机电系统 (MEMS) 或射频 (RF) 滤波器)组合封装。这允许使用异构集成进行晶圆级和面板级封装。尽管从定义上讲,WLP 历来都是使用直径为 200 毫米或 300 毫米的圆形晶圆格式生产的,但多家供应商正在将类似的制造方法扩展到矩形面板格式。这将允许不仅在晶圆级基础设施(晶圆级封装,或 WLP)上制造异构封装,而且还可以在面板级基础设施(面板级封装,或 PLP)上制造异构封装。本章将包括异构集成路线图 (HIR) 的 WLP 和 PLP 格式。本章分为 7 个部分:1. 执行摘要 2. 晶圆级封装的市场驱动因素和应用 3. 晶圆级封装概述:技术、集成、发展和关键参与者 4. 技术挑战 5. 供应链活动和注意事项 6. 总结、最终结论和致谢 7. 参考文献