在这项工作中,我们证明,由于现有评估协议和数据集中的不足,因此有必要重新审视并全面研究Mul-timodal零射击学习(MZSL)问题问题。具体来说,我们解决了MZSL方法面临的两个主要挑战。 (1)既定基线的情况通常是无与伦比的,而且有时甚至是有缺陷的,因为现有的评估数据集通常与培训数据集有一些重叠,因此违反了零照片范式; (2)大多数现有的方法都偏向可见的类,这在对可见和看不见的类别进行评估时会大大降低性能。为了应对这些挑战,我们首先引入了一个新的多模式数据集,用于零照片评估,称为MZSL-50,其中有4462个视频来自50个广泛多元化的类别,并且与培训数据没有重叠。此外,我们提出了一种新型的多模式零射击变压器(MZST)体系结构,该体系结构利用了吸引瓶颈进行多模式融合。我们的模型可以直接预测语义表示,并且在将偏见降低到可见的类别方面表现出色。我们进行了广泛的消融研究,并在三个基准数据集和我们的新型MZSL-50数据集上实现最先进的结果。具体来说,我们提高了传统的MZSL绩效2。1%,9。81%和8。 vgg-sound,UCF-101和ActivityNet的68%。 最后,我们希望引入MZSL-50数据集将促进对社区中多模式零射击的深入研究。 181%和8。vgg-sound,UCF-101和ActivityNet的68%。最后,我们希望引入MZSL-50数据集将促进对社区中多模式零射击的深入研究。1
目的大型语言模型(LLM)(例如ChatGpt)在放射学上显示出巨大的潜力。他们的有效性通常取决于及时的工程,这可以优化与聊天机器人的交互,以获得准确的结果。在这里,我们强调了迅速工程在调整LLMS对特定医疗任务的反应中的关键作用。使用临床案例的材料和方法,我们阐明了不同的提示策略,可以在没有基本模型的其他培训的情况下使用GPT4适应新任务的LLM CHATGPT。这些方法的范围从精确提示到高级内部文化方法,例如少量射击和零射击学习。此外,讨论了作为数据表示技术的嵌入的重要性。结果提示工程大大改善并助长了聊天机器人的输出。此外,嵌入规格 -
在3D医学图像中对感兴趣的器官进行分割是准确诊断和纵向研究的必要条件。尽管使用深度学习的最新进展已显示出许多细分任务的成功,但是高性能需要大的数据集,而注释过程既耗时又耗时。在本文中,我们提出了一个3D少数射击分割框架,以使用目标器官注释的有限训练样本进行准确的器官序列。为了实现这一目标,像U-NET一样的网络旨在通过了解支持数据的2D片与查询图像之间的关系,包括辅助门控复发单元(GRU),该单元(GRU)了解相邻切片之间编码特征的一致性。此外,我们会介绍一种传输学习方法,以通过在支持数据中采样的任意支持和查询数据进行测试之前对模型进行更新,以适应目标图像和器官的特征。我们使用带有不同器官注释的三个3D CT数据集评估了我们提出的模型。我们的模型比最先进的射击分段模型产生了显着提高的性能,并且与经过更多目标培训数据训练的完全监督模型相当。