病毒清除率结果表明,所研究的每个蛋白质A蛋白质上的显着清除率 - 所有树脂均显示对数还原因子更大或等于2 log10。重复运行被证明是一致的,因为所有重复运行都保持在彼此的1个日志之内。在这项研究中,与Praesto喷射A50和竞争者树脂相比,Praesto喷射A50 HIPH可以更好地清除这两种病毒。对于MLV,与使用典型的pH 3.5的典型洗脱相比,与pH 4.5的Praesto喷射A50 HIPH的病毒对数减少显示出更好的去除(原木还原4.85±0.06 log10)。对于MMV,与使用典型的pH 3.5的典型洗脱相比,与pH 4.5的Praesto射流A50 HIPH的病毒对数减少pH 4.5相比显示出更好的去除(降低3.85±0.52 log10)。
核子的结构是多维的,取决于组成部分的横向动量,空间几何形状和极化。可以使用在超疗养重的沉重离子碰撞中产生的高能光子来研究这种结构。提出了在大动量转移下具有两个喷气式相互作用的两种喷气式事件的方位角角相关性的第一个测量,这一过程被认为对基本的核gluon偏振敏感。本研究使用在效率上的超递铅铅碰撞碰撞的数据样本。02 TEV,对应于0的集成光度。38 nb - 1,在LHC的CMS实验中收集。发现,随着dijet横向动量的增加,两个射流横向动量向量的总和与差之间的相关性的第二个谐波被发现是正的。成功地描述了HERA实验的广泛质子散射数据,无法描述观察到的相关性,这表明存在Gluon极化效应。
理解喷气机的子结构是高能物理学的基本挑战,因为其固有的复杂性和多规模动力学。虽然诸如蒙特卡洛模拟之类的经典方法是重现喷气机现象学特性的功率工具,但这种方法难以准确捕获有关射流形成和进化的复杂相关性和随机过程。量子构成对抗网络(QGAN)通过利用量子计算以数据驱动方式建模量子计算对高维相关性和纠缠的能力来提供一种新颖的补充方法。在这项工作中,我们采用了QGAN框架来对喷气机中领先的黑龙的运动学进行建模。我们的研究调查了量子机器学习是否可以提供对喷气子结构建模的新见解,尤其是在经典方法遇到限制的地区。结果表明,QGAN可以有效地捕获喷气子结构的关键特征,为探索高能物理学中驱动喷气机形成和进化的机制铺平了道路。
所有联邦太平洋自动射流开关都有一个重尺寸的钢架,可确保正确的接触对准并消除任何切换到安置对齐的问题。提供了可选的不锈钢开关(当前携带的零件不是不锈钢)。一种具有重型,长寿弹簧的快速制造,快速储存的能量机制,可独立于操作手柄速度,可高速开放和关闭。这种高速机制可以通过专利的联邦太平洋界限来确保关税的断层功能和负载中断。开关叶片由高电导率铜制成。电流从开关刀片通过铰链到负载端子的转移是通过唯一的电流转移平均值来完成的,该平均值由珠宝商的百叶窗接触带组成,该接触带环绕着铰链点的铜销。由于电流高于正常的流动,磁力倾向于将接触带上的百叶窗旋转到垂直位置,从而为断层电流义务提供了更高的接触压力。
纤维因其优异的拉伸性、透气性和高孔隙率而在诸多领域具有广泛的应用前景。人们已经开发出许多方法来使用各种材料来生产合成纤维,其中,静电纺丝是一种广泛使用且有效的生产微纳米级纤维(纤维直径范围从 2 纳米到几微米)的方法[5]。除静电纺丝外,大多数其他传统的纤维生产方法,如湿纺和干纺、拖曳纺丝、凝胶纺丝和三维 (3D) 打印,都仅依靠机械拉伸或剪切应力来拉伸和变细纤维射流;因此,它们通常很难在不导致纤维断裂的情况下生产出纤维直径小于 10 毫米的超薄纤维[6]。静电纺丝利用强静电力将聚合物溶液或熔体拉伸成细射流,最终形成微/纳米纤维沉积。这种现象最早在一个多世纪前被发现和描述 [ 7 ],但直到 20 世纪初,“静电纺丝”一词才正式提出 [ 8 ]。从那时起,关于这种用途广泛且简单的纤维生产技术的研究一直在显着增长 [ 9 ]。随着材料科学和纳米技术的最新发展,新材料已与静电纺丝技术相结合,例如导电材料、能量产生材料以及生物相容性和生物活性材料。利用这些新材料功能化的电纺微/纳米纤维不仅保留了超薄纤维的物理优点,例如高长宽比、柔韧性、方向性和高孔隙率,而且还开辟了新颖的纤维和纺织设备配置和应用。例如,压电聚合物的使用使一系列本质上灵活和透明的能量收集器和自供电传感器成为可能[10,11]。用聚合物和金属或陶瓷制成的复合材料纤维在新型传感和光电设备中显示出良好的应用潜力[12,13]。同时,这些新兴应用要求对电纺纤维的形貌和图案进行更精确、更方便和定制化的控制。因此,人们努力改进和调整静电纺丝装置和工作条件,并将纤维纺丝与其他先进加工技术(如 3D 打印和微流体)相结合。本章旨在全面描述静电纺丝的最新创新和技术进步。为了让不熟悉静电纺丝的读者有效地阅读本章,我们在开头简要介绍了静电纺丝的物理原理和基本装置设计,然后讨论了
摘要 - 为了促进电能部门的有效脱碳化,本文引入了用于电力系统决策的通用碳感知最佳功率流(C-OPF)方法,该方法考虑了电网碳足迹的主动管理。建立在常规的最佳功率流(OPF)模型的基础上,提出的C-OPF模型进一步构建了碳发射流程方程和约束以及与碳相关的目标,以使电力电网的电力流量和碳发射流相比。本质上,提出的C-OPF可以看作是OPF的碳意识概括。此外,本文严格确定了保证碳排放流程方程的可行性和解决方案唯一性的条件,并提出了一种重新制定技术,以解决C-OPF模型中未确定的功率流方向的关键问题。此外,开发了两个用于能源储能系统的新型碳足迹模型,并将其整合到C-OPF方法中。数值模拟证明了C-OPF方法的特性和有效性。
抽象的喷射淬灭,当Parton Cascade发生在介质内时,QCD射流的性质的修改是一种本质上的量子过程,其中颜色相干效应起着至关重要的作用。尽管在过去几年中取得了很大的进步,但对蒙特卡洛·帕顿(Monte Carlo Parton)阵雨的模拟仍然无法访问。在这种情况下,值得尝试替代配方,量子计算中的快速发展提供了一个非常有希望的方向。本文的目的是引入一种策略,以模拟单个粒子动量扩展,这是射流淬火的最简单构件。动量拓宽是由于与基础培养基相互作用的夸克或Gluon横向妈妈的修改,以QCD背景字段建模。在我们在这里考虑的αS中的最低顺序,动量扩大不涉及parton分裂和粒子数量保守,从而大大简化了量子算法的实现。但是,此数量与RHIC,LHC或未来EIC的现象学非常相关。
Supernova Remnant Cassiopeia A表现出严重的不对称性,主要是两个大型喷气结构,它们沿相反方向延伸到标称的正向冲击。这些喷气机已通过高度不对称的超新星爆炸来解释。我们使用超新星残留物的三维流体动力模拟来探讨这样的假设,即这种结构可能是由球形超新星与非对称室内媒体(CSM)的相互作用引起的。我们强加了一个轴对称的CSM,其密度区域附近赤道平面和较低密度区域附近的轴对称CSM,这是从恒星和行星星云的观察结果以及近距离二进制系统中风的建模所推断的。我们发现,如果对称轴和一个大约10度离轴的角度之间的CSM对比度的密度对比度超过了临界值,则射流形成是这些模型的强大特征。这些喷气机的长度可以超过CSM密度对比度向前冲击的标称半径的三倍以上,低至3.00。这些喷气机有时会倒塌,跌落到一侧,但迅速再生。将这些模型扩展到较高的数值分辨率会产生相似的演化,但在后期导致更大的喷气机。
摘要本文强调了诸如厚膜丝网印刷,墨水射流和后发射薄膜工艺等技术的可能组合,并结合激光滴定的细vias,以产生高密度的微型LTCC底物。为了获得内层的银色图案,在陶瓷绿色的床单上应用了常规的厚膜印刷和墨水喷射印刷(使用纳米银颗粒分散墨水)。墨水喷气工艺使用线/空间= 30/30 m m的细线进行金属线。对于层间连接,使用了由紫外线激光形成的直径30 m m的细vias。然后将这些床单彼此堆叠并发射以获得基础。在此基底物上,通过薄膜过程形成了用于翻转芯片的细铜图案。表面表面均由镍钝化和通过电板沉积的金层。用于进行迹线的三个图案操作和细vias的紫外线激光钻孔的组合使得实现精细的螺距LTCC,例如,用于Flip Chip设备安装。
本研究介绍了新型锡(IV)氧化物 /还原石墨烯(SNO 2 /RGO)纳米复合材料的合成和深入评估,作为晚期电化学超级电容器的电极材料开发了。利用具有优化参数的可扩展合成方法,由X射线衍射(XRD),透射电子显微镜(TEM)和扫描电子显微镜(SEM)表征所得的纳米复合材料,揭示其明确定义的形态,晶体结构和组成。包括射流电荷 - 电荷 - 电荷 - 电荷 - 电荷障碍,电化学障碍光谱(EIS)(EIS)和环状伏安法(CV)的全面电化学评估表明,与纯SNO 2相比,SNO 2 /RGO表现出出色的性能指标。值得注意的是,在1 a g -1的电流密度下,SNO 2 /RGO纳米复合材料达到了140 f g -1的比电容,超过了纯SNO 2的133 f g -1。这些发现突出了SNO 2 /RGO纳米复合材料可显着增强储能能力的潜力,使其成为电动汽车,便携式电子设备和可持续能源系统应用的有前途的候选人。