摘要。生物碳泵(BCP)包括将有机碳从表面转移到深海的各种过程。这导致了长期的碳固执。没有BCP,AT-MospherCO 2浓度将高约200 ppm。 这项研究表明,中尺度和子尺度的海洋动力学可能会对颗粒有机物(POM)垂直分布产生重大影响。 我们的结果表明,诸如中尺度涡流之间的强烈尺度额叶区域可能导致从混合层深度(MLD)(MLD)向中质区域的重要积累和POM转运。 要得出这些结论,采用了多方面的方法。 它进行了原位测量和来自配备有水下视觉效果器(UVP6),卫星高度学数据和Lagrangian diag-Nostics的BGC-Argo河口的海洋积雪图像。 我们将研究重点放在非洲西南开普盆地17个月长的射流任务中观察到的三个强烈的雪分布特征。 这些特征位于中尺度涡流之间的额叶区域。 我们的研究表明,由额叶生成驱动的机制诱导的颗粒损伤泵具有通过增加将碳注入到水柱中的深度来增强生物泵的有效性。 这项工作还强调了建立针对涡流之间接口区域的重复采样活动的重要性。 这可以改善我们的没有BCP,AT-MospherCO 2浓度将高约200 ppm。这项研究表明,中尺度和子尺度的海洋动力学可能会对颗粒有机物(POM)垂直分布产生重大影响。我们的结果表明,诸如中尺度涡流之间的强烈尺度额叶区域可能导致从混合层深度(MLD)(MLD)向中质区域的重要积累和POM转运。要得出这些结论,采用了多方面的方法。它进行了原位测量和来自配备有水下视觉效果器(UVP6),卫星高度学数据和Lagrangian diag-Nostics的BGC-Argo河口的海洋积雪图像。我们将研究重点放在非洲西南开普盆地17个月长的射流任务中观察到的三个强烈的雪分布特征。这些特征位于中尺度涡流之间的额叶区域。我们的研究表明,由额叶生成驱动的机制诱导的颗粒损伤泵具有通过增加将碳注入到水柱中的深度来增强生物泵的有效性。这项工作还强调了建立针对涡流之间接口区域的重复采样活动的重要性。这可以改善我们的
通过在旋转平台和移动平台之间施加电场,直接撰写的静电纺丝(DWE)将对添加剂制造(AM)物质沉积(AM)的典型控制与电纺丝(ES)的能力(ES)结合在一起。以这种方式,DWE可以控制纤维沉积和捏造复杂的纤维结构,这些结构具有挑战性,可以通过ES获得,并更真实地复制生物组织相对于AM的纯净结构。此外,如果与细胞 - 电纺丝旋转相比,DWE并不意味着直接嵌入墨水中的细胞,在使用电压差异并直接与通常用于静电纺丝的溶剂直接接触[1] [1]时,它可以经过死亡,但它能够达到高结构分辨率,而无需损害较高的细胞不可损害。要控制DWE中的文件沉积,将电纺射流保持在其笔直区域是必不可少的,这可以通过近距离电纺(NFES)或熔体电动(MEW)获得。与传统的静电纺丝相比,没有鞭打阶段会导致通常更大的直径,但与其他广泛使用的挤出技术相比,较小的持续阶段(
摘要:直接金属沉积(DMD)可用于表面的覆层以及修复零件和功能的修复和增材制造。过程监视和控制方法可确保制造过程中的质量一致。通过光发射光谱进行过程辐射进行监测可以提供有关过程条件和沉积层的信息。这项工作的目的是使用光谱仪从过程中测量光学排放,并识别光谱中的元素线。单光谱已从该过程中记录下来。基于CO的粉末(METCOCLAD21)的单个轨道在S235碱基材料上被覆盖。已经研究了各种过程参数对元素线发病率和强度的影响。此外,已经对光谱排放的激光束,粉末射流和底物之间的相互作用进行了单独检查。结果表明元素线不经常发生。因此,单光谱被分类为包括元素线(A型)和不包括元素线(B型)的光谱。此外,只能检测到非离子元素,铬经常出现。表明,增加激光功率会增加A型光谱的发生率和特定CR I线的强度。,元素线仅在激光束与沉积层的熔体池相互作用中经常发生。
专注于综合能源系统(IES)的低碳经济运作,本文提出了一种新型的能碳定价和能源管理方法,以促进基于碳发射流理论和增强学习(RL)方法的IES中碳排放减少。首先,提出了能量碳综合定价模型。提出的定价方法通过追踪嵌入的能量使用碳排放量,并建立了电网,IES和自使士之间的能量碳含量关系。其次,考虑到能源碳综合定价策略的能源管理模型是基于马尔可夫决策过程(MDP)建立的,其中包括Posumers Energument Enctumpt Optumpt Coss Model and Energy Service Service Provider(ESP)PROFIF模型。然后,提出了一种基于RL方法的求解方法。最后,数值结果表明,所提出的方法可以改善运营经济并减少IES的碳排放。在定价和能源管理过程中考虑伴随电力和热力的碳价格时,可以改善ESP的利用,并可以降低生产商的成本,并且与不考虑碳价格相比,IES的总碳排放量可以降低5.75%。
摘要 本研究旨在解决反应射流和火焰的相场和温度场的无扰动诊断的科学和实际问题。以轴对称氢扩散火焰和蜡烛火焰的热气流为例,开发了一种适合于解决问题的方法,该方法基于相位光密度场的希尔伯特多色可视化,测量所研究介质选定区域的温度分布,逐像素处理由摄影矩阵在 RGB 通道中记录的 RAW 图像。可视化的希尔伯特结构携带有关温度场引起的相位光密度扰动的信息。使用阿贝尔变换分析了所研究火焰的轴对称近似中探测光场的相位结构。迭代选择径向温度分布、调整后的贝塞尔曲线,随后计算折射率和相位函数的空间结构。以氢气-空气火焰为例,在与 Gladstone-Dale 色散公式一致的模型中,考虑到混合气体部分光学特性的多样性,对温度场进行了重建。讨论了火焰周围空气扰动对其轴对称性的影响。研究结果可靠性的标准是比较实验中获得的希尔伯特图和从温度场引起的相结构重建的希尔伯特图。关键词 1 火焰的光学诊断、氢气-空气扩散火焰、希尔伯特光学、希尔伯特图
对表面上的冰和石灰尺度晶体的不必要积聚是对重大经济和可持续性的长期挑战。被动抑制液体液体表面的糖霜和缩放通常不足,在恶劣条件下容易受到表面衰竭的影响,并且不适合长期/现实生活中的使用情况。这样的表面通常需要多种功能,例如光学透明度,可靠的冲击电阻以及防止低表面能液体污染的能力。不幸的是,最有前途的进步依赖于使用生物持久性和/或剧毒的每种氟化化合物。在这里表明有机,网状介孔结构,共价有机框架(COF)可能是溶液。通过利用无缺陷COF的简单且可扩展的合成和合理的合成后功能化,制备了精确的纳米齿状(形态学)的纳米涂层,可以抑制分子水平的成核而不会损害相关污染的预防和鲁棒性。结果是一种简单的策略,以利用纳米配置效应,这显着延迟了表面上冰和尺度形成的成核。冰核被抑制至-28°C,在过饱和条件下避免了尺度的形成> 2周,并且在韦伯数字上影响的有机溶剂的射流> 10 5也被抗光透明度(> 92%)的表面抵抗。
摘要 德克萨斯 A&M 大学的低速闭环风洞用于研究各种流动类型产生的湍流混合。预期的实验范围从典型的“单位流”到更复杂的流动和几何组合。该设施最初位于匹兹堡大学,后来搬迁至德克萨斯 A&M 大学的热工水力学验证和确认 (THVV) 实验室。该风洞经过了大量改造和更新的诊断,重新引发了人们对流动质量评估的兴趣。这包括通过粒子图像测速 (PIV) 测量提供的风洞入口速度分布的全面映射。额外的温度和表压测量完成了系统能力的评估。这些初步诊断产生了计算流体动力学 (CFD) 模型验证所需的经验确定的边界条件和流体特性相关性。本文最后介绍了两种单元流类型,包括流过圆柱体的流动(具有三个不同的横截面)和在三个速度比下以横流方式流动的单个圆形射流。单元流可作为 THVV 模拟工作的初始基准。每个基准都列出了关键验证指标,包括集合平均速度、雷诺应力和本征正交分解 (POD) 特征向量。
热喷涂包含各种看似简单的表面工程工艺,其中固体材料(线材、棒材、颗粒)被等离子射流或燃烧火焰快速加热,熔化并推向要涂覆的基材。 基材表面的熔融颗粒快速凝固,一点一点积聚成一层,该层可具有多种功能,包括防止磨损、侵蚀、腐蚀和热或化学降解。 涂层还可以赋予基材特殊的电、磁或装饰性能。 许多工业领域都采用厚涂层来恢复或获得所需的工件尺寸和规格。 本文在编写时考虑到了材料工程和材料科学专业学生的理论和实践要求。它是根据 1991 年至 1995 年期间在泰国曼谷吞武里国王理工学院能源与材料学院材料工程专业硕士生课堂上以及 1993 年以来在弗莱贝格矿业技术大学技术 (应用) 矿物学专业学生课堂上所讲授的课题发展起来的。作者在 1987 年至 1988 年担任加拿大艾伯塔省埃德蒙顿市艾伯塔研究委员会工业技术部工业产品与材料科科长期间,也积累了等离子喷涂技术方面的经验。
喷射是一种自限制的心律失常,通常在心脏手术后的72小时内发生,并在8天内解决。这是一种不断的心动过速,通常带有AV障碍性,导致在降低心肌氧供应的情况下,心肌工作量和氧气消耗增加的有害组合。由于心房收缩期贡献的损失以及对心动过速导致的舒张期填充时间缩短,因此由于心室填充受损而减少全球心脏输出。这可能会迅速导致威胁性低心输出态状态(LCO)的生命,尤其是如果患者先前被造成血流动力学损害。喷射像自动心动过速一样,因此通常不会对DC休克,腺苷或超速起搏。治疗旨在通过起搏降低和恢复AV同步。心率下降将减少心肌氧的需求,同时改善心肌氧递送。管理的基本原理包括足够的镇痛和镇静,校正任何电解质不平衡以及减少肌力的减少。降低射流速率的最有效的治疗方法是适度的体温过低和静脉静脉内龙酮的组合。一旦降低速率,就可以通过比心律失常的速度快速起搏来实现AV同步。ECLS保留用于威胁对低温和IV胺碘酮的抗生命。
本文介绍并解释了在伤口净化过程中用电化学方法增强等离子活化水凝胶疗法 (PAHT) 抗菌作用的原理。该过程涉及在用氦 (He) 等离子射流治疗期间接地和水合聚乙烯醇 (PVA) 水凝胶薄膜。这在电化学上增强了过氧化氢 (H 2 O 2 ) 的产生,过氧化氢是 PVA 水凝胶中产生的主要抗菌剂。研究表明,通过电子解离反应以及与激发态物质、亚稳态和紫外 (UV) 光解相关的反应,H 2 O 2 的产生在电学上得到增强。通过等离子射流的氦流使 PVA 水凝胶脱水,在化学上增强了 H 2 O 2 的产生,这为与 H 2 O 2 产生相关的电化学依赖反应提供了能量。电化学过程在 PVA 水凝胶中产生了前所未有的 3.4 mM 的 H 2 O 2。该方法还增强了其他分子(如活性氮物质 (RNS))的产生。电化学增强的 PAHT 可高效消灭常见的伤口病原体大肠杆菌和铜绿假单胞菌,对金黄色葡萄球菌有轻微效果。总体而言,这项研究表明,新型 PAHT 敷料为控制感染和促进伤口愈合提供了一种有希望的抗生素和银基敷料替代品。