经过近三十年的国际深入研究,碳纳米管 (CNT),尤其是单壁纳米管 (SWNT),仍然是纳米科学和量子科学研究的强大动力。这种典型的一维纳米科学物体具有各种电学、光学和机械特性,催生了大量的应用。这些应用面临的主要障碍是将高质量、合适的 CNT 定位和组织到特定的架构中,同时保留其优异的性能,这些性能通常与其晶体质量和高纵横比有关。因此,一条通往具体科学问题和应用的突出研究方向是寻找对齐、选择、定位和完善 SWNT 的策略 [1, 2, 3]。应用包括柔性高温电子器件、光电子器件和热电器件 [4]、纳米流体 [5]、终极纳米级晶体管 [6, 7]、纳米力学 [8]、扫描探针尖端 [9]、量子力学系统 [10] 和场发射 (FE) 源 [11]。为了通过更好地控制生长来克服主要障碍,显然首先希望在原子尺度上观察单个 CNT 的时间分辨生长,其次希望找到控制这种生长的有用工具,如果可能的话,最好是动态控制。对于这种控制,需要不同的外力,如电场 [12]、气流 [13]、与原子台阶的相互作用
在合金的增材制造过程中,在局部热与物质相互作用后,熔融材料会迅速凝固。然后,在剩余的构建时间内,它会在固态下经历冷却/加热循环,即固态热循环。固态热循环期间产生的热机械力可以触发大量微观机制,从而带来显著的微观结构变化,决定最终成品部件的机械性能。在这项工作中,我们的目标是利用透射电子显微镜深入了解固态热循环驱动的奥氏体不锈钢中亚微米级沉淀物的演变。为此,从预制样品中提取薄膜薄片,并在透射电子显微镜内进行不同的原位固态热循环。固态热循环旨在了解温度幅度和速率、热循环次数和类型以及后处理退火对沉淀物演变的影响。每次热循环前后的高角度环形暗场成像和能量色散 X 射线光谱可深入了解不同热循环因素对沉淀物成分、尺寸和形态演变的贡献。常见趋势包括 Mn 和 Si 从富含 Mn-Si 的氧化物扩散到周围基质中,Cr 环在氧化物沉淀物周围形成,S 在非氧化物沉淀物中重新分布。在 (Upadhyay et al., Sci. Rep. 11 (2021) 10393) 中研究的原样样品中也发现了类似的 Cr 环和 S 分布,这有力地支持了这些结果相对于增材制造过程中发生的情况的代表性。
《澳大利亚天文学会刊物》刊登的研究结果表明,利用这项新技术发现了两个快速射电暴和两颗偶发中子星,并改进了四颗脉冲星的定位数据。此后,他们又发现了 20 多个快速射电暴。
摘要:通过同源物检测对限制光场的相位分辨成像是纳米光学和光子学中计量学的基石,但是到目前为止,其在电子显微镜中的应用已受到限制。在这里,我们通过在连续梁透射电子显微镜中用飞秒光脉冲照明来报告波导结构中光模式的映射。多光子光发射会导致雷伦兹显微镜图像的远期充电模式。所得图像的对比与驻光波的强度分布有关,并在分析模型中进行了定量描述。该方法的鲁棒性以更宽的参数范围和更复杂的样品几何形状(包括微型和纳米结构)展示。我们讨论了对电子显微镜的基于光学显微镜的进一步应用,并与原位光学激发奠定了基础,为传播光场的相位分辨成像成像奠定了基础。关键字:超快传输电子显微镜,非线性光发射,洛伦兹显微镜,站立光波,波导模式,飞秒激光■简介
上下文。随着天文调查产生的数据量的越来越多,自动分析方法已变得至关重要。合成数据是开发和测试此类方法所必需的。当前模拟的经典方法通常从不可能的细节或源类型出现的不准确表示。深层生成建模已成为综合现实图像数据以克服这些定义的新方法。目标。,我们实施了一个深入的生成模型,该模型对观测值进行了训练,以产生逼真的射电星系图像,并完全控制了频道和源形态。方法。我们使用了一个分散模型,该模型经过连续的时间步骤训练,以减少采样时间而没有质量损害。这两个模型分别在两个不同的数据集上进行了培训。一组是从Lofar两米高调查(Lots)的第二个数据发布中获得的图像选择。该模型在重新缩放图像像素值后保留信号强度信息的峰值条件。另一个较小的集合是从非常大的阵列(VLA)调查中,对二十秒(第一个)的无线电天空的微弱图像进行了调查。在该集合中,每个图像都带有形态学类标签。有条件的抽样是通过无分类的分解指导实现的。,我们通过比较了实际数据和生成数据的不同数量的分布来评估生成的图像的质量,包括来自标准源填充算法的结果。结果。通过培训分类器并比较其在实际数据和生成的数据上的性能来评估类调节。我们已经能够使用25个采样步骤来生成高质量的逼真图像,这在射电天文学领域是前所未有的。生成的图像在视觉上与训练数据无法区分,并且已成功复制了不同图像指标的分布。分类器显示出对真实图像和生成的图像的表现同样出色,表明对形态源特性的强烈采样控制。
由于其出色的物理,化学和电化学特性,热解碳已成为各种技术应用的有前途的材料[1]。热解碳可以通过在受控条件下在高温和惰性气氛中的受控条件下的聚合物碳前体进行热解。通过调整热解条件,碳原子的杂交以及衍生碳的物理化学特性可以量身定制。尽管一些研究人员试图以原子量规模研究石墨化过程,但全面的理解仍然难以捉摸。透射电子显微镜(TEM)非常适合研究纳米级热处理过程中聚合物薄膜的石墨化[2]。的确,TEM提供了原位分析能力的优势,这些功能可以揭示热解过程中热解碳的纳米结构。但是,聚合物薄膜样品的制备仍然是一个挑战。这项工作介绍了通过两光子聚合物化(2pp)3D打印技术的基于mems的TEM加热芯片(密集溶剂)上悬浮的聚合物薄膜结构的微结构[3]。我们还报告了原位研究的结果,用于追踪热解碳的石墨化。
F. Marin 1、⋆、A. Marinucci 2、M. Laurenti 3,4,17、DE Kim 5,6,3、T. Barnouin 1、A. Di Marco 5、F. Ursini 7、S. Bianchi 7、S. Ravi 8、HL Marshall 8、G. Matt 7、C.-T. Chen 9,VE Gianolli 10,7,A. Ingram 11,R. Middei 17,3,WP Maksym 12,C. Panagiotou 8,J. Podgorny 13,S. Puccetti 4,A. Ratheesh 5,F. Tombesi 3,14,15,I. Agudo 16,LA Antonelli 4,17,M. Bachetti 18,L. Baldini 19,20,W. Baumgartner 21,R. Bellazzini 19,S. Bongiorno 21,R. Bonino 22,23,A. Brez 19,N. Bucciantini 24,25,26,F. Capitanio 5,S. Castellano 19,E. Cavazzuti 2,S. Ciprini 4,14,E。Costa 5,A。de Rosa 5,E。Del Monte 5,L。Di Gesu 2,N。Di Lalla 27,I。Donnarumma 2,V。Doroshenko 28,M。DovˇCiak 13,S。Ehlert 21,T Iwakiri 33,S。Jorstad34,35,P。Kaaret21,V。Karas13,F。Kislat36,T。Kitaguchi29,J。Kolodziejczak21,H。Krawczynski37莫纳卡 5,3,6, L. Latronico 22, I. Liodakis 38, G. Madejski 39, S. Maldera 22, A. Manfreda 19, A. Marscher 34, F. Massaro 22,23, I. Mitsuishi 40, T. Mizuno 41, F. Muleri 5, M. Negro 42,43,44, S. Ng 45, S. O'Dell 21, N. Omodei 39, C. Oppedisano 22, A. Papitto 17, G. Pavlov 46, M. Perri 4,17, M. Pesce-Rollins 19, P.-O. Petrucci 10, M. Pilia 18, A. Possenti 18, J. Poutanen 47, B. Ramsey 21, J. Rankin 5, O. Roberts 9, R. Romani 39, C. Sgrò 19, P. Slane 12, P. Soffi tta 5, G. Spandre 19, D. Swartz 9, T. Tamagawa 29, F. Tavecchio 48, R. Taverna 49, Y. Tawara 40, A. Tennant 21, N. Thomas 21, A. Trois 18, S. Tsygankov 47, R. Turolla 50,51, J. Vink 52, M. Weisskopf 21, K. Wu 51, F. Xie 53.5,以及 S. Zane 51
该预印本版的版权持有人于2024年8月15日发布。 https://doi.org/10.1101/2024.04.22.590491 doi:Biorxiv Preprint
超快电子显微镜提供了一种类似电影和时间的材料结构动力学的访问,但是到目前为止,基本原子运动或电子动力学的速度太快而无法解决。在这里,我们通过激光生成的Terahertz光的单光周期报告了透射电子显微镜中电子脉冲的全光控制,压缩和表征。这个概念提供了孤立的电子脉冲,并将透射电子显微镜的空间分辨率与通过激光光周期提供的时间分辨率合并。我们还报告了多电子状态的全光控制,并在时域中找到了实质性的两电子和三电子反相关。这些结果开辟了可能性原子和电子运动的可能性,以及它们在时空中基本维度上的量子相关性。
4.3在2025年,Sarao将考虑研究项目的建议,其中涉及在Sarao(包括来宾仪器)的主持下,在南非的所有射电或地理设施的科学使用或技术开发。有关提议的任何研究的相关数据必须在2025年提供。将对与Meerkat直接相关的项目进行优先级。链接到来宾工具的建议将需要明确提供所需资源的可用性,包括特定工具的成熟度(以及相关数据的可用性)。