1 瑞士西北应用科学与艺术大学 FHNW 工程学院,Bahnhofstrasse 6, 5210 Windisch, Switzerland; andrea.battaglia@fhnw.ch (AFB); muriel.stiefel@fhnw.ch (MZS) 2 欧洲空间研究与技术中心 (ESTEC),欧洲空间局,2201 Noordwijk,荷兰 3 Mullard 空间科学实验室,伦敦大学学院,Holmbury St. Mary,Dorking RH5 6NT,英国 4 加州大学伯克利分校空间科学实验室,7 Gauss Way,伯克利,CA 94708,美国 5 粒子物理和天体物理研究所 (IPA),瑞士苏黎世联邦理工学院 (ETHZ),Wolfgang-Pauli-Strasse 27,8039 苏黎世,瑞士 6 天体粒子与宇宙学,巴黎城大学,CNRS,CEA,F-75013 巴黎,法国 7 美国国家航空航天局戈达德太空飞行中心,8800 Greenbelt Road,Greenbelt,MD 20771,美国; albert.y.shih@nasa.gov (AYS) 8 波茨坦莱布尼兹天体物理学研究所 (AIP), An der Sternwarte 16, 14482 Potsdam, 德国; awarmuth@aip.de (AW); mverma@aip.de (MV) 9 格拉茨大学物理研究所和 Kanzelhöhe 天文台,Universitätsplatz 5, 8010 Graz, Austria 10 都柏林高等研究院,31 Fitzwilliam Place, Dublin D02 XF86,爱尔兰; peter.gallagher@dias.ie (PTG) 11 格拉斯哥大学物理与天文学院,University Avenue, Glasgow G12 8QQ,UK; iain.hannah@glasgow.ac.uk (IH) 12 诺森比亚大学数学、物理和电气工程系,泰恩河畔纽卡斯尔 NE1 8S,英国 13 捷克科学院天文研究所 (CAS),251 65 Ondˇrejov,捷克共和国; jana.kasparova@asu.cas.cz 14 西肯塔基大学物理与天文学系,Bowling Green, KY 42101,美国 15 图像和数据分析方法 (MIDA),Dipartimento di Matematica,Università di Genova,Via Dodecaneso 35,I-16146 Genova,意大利; piana@dima.unige.it (MP) 16 Centrum Bada´n Kosmicznych, PAN, ul. Bartycka 18a, 00-716 华沙, 波兰; tmrozek@cbk.pan.wroc.pl (TM) 17 Istituto Nazionale di Fisica Nucleare (INFN-Pisa), 56127 Pisa, Italy 18 Institut de Recherche en Astrophysical et Planétologie (IRAP), National Center for Space Studies (CNES), Université Toulouse III, 31062 Toulouse, France 19 物理学加州大学圣克鲁斯分校,1156 High St.,Santa Cruz,CA 95064,USA 20 圣克鲁斯粒子物理研究所,加州大学圣克鲁斯分校,Santa Cruz,1156 High St.,Santa Cruz,CA 95064,USA 21 空间研究和天体物理仪器实验室 (LESIA),CNRS-UMR 8109,Observatoire de Paris,5 Place J.扬森, 92195 默东, 法国; nicole.vilmer@obspm.fr * 通讯地址:daniel.ryan@fhnw.ch
朱丽叶·夏本(Juliette Charbonnel),纳塔恰(Natacha Darmet),克莱尔·德里斯(Claire Deilhes),洛迪维奇·布奇(Lodivic Broche),城市雷蒂尔(City Reytier)等。全稳态蛋糕的安全评估:一种创新的方法论,它是一种使用situ synchrotrotron x射线广播的创新方法。ACS应用能源材料,2022,̿10.1021/acsaem.2C01514。̄̄̄2378188
朱丽叶·夏本(Juliette Charbonnel),纳塔恰(Natacha Darmet),克莱尔·德里斯(Claire Deilhes),洛迪维奇·布奇(Lodivic Broche),城市雷蒂尔(City Reytier)等。全稳态蛋糕的安全评估:一种创新的方法论,它是一种使用situ synchrotrotron x射线广播的创新方法。ACS应用能源材料,2022,̿10.1021/acsaem.2C01514。̄̄̄2378188
临界维度(CD)控制在半导体行业至关重要,并且随着光刻限制不断推动以达到小于10 nm的技术节点而变得更具挑战性。为了确保过程的质量和控制,有必要探索新的计量技术。从这个意义上讲,临界小角度X射线散射(CDSAXS)已被确定为确定具有子纳米准确精度的线光栅的平均形状的潜在候选者。在本文中,我们将CDSAXS结果基于光学关键维度(OCD),临界尺寸扫描电子显微镜(CDSEM)和透射电子显微镜(TEM)测量,以前从制造线的工业计量工具和表征实验室中收集的先前从工业计量工具中收集的测量值。重点放在用于CDSAXS的模型以及如何改进的模型上。我们讨论了所有这些多尺度和多物理技术之间的差异,并质疑我们比较它们的能力。
4U 0114 + 65是由发光超级B1IA(称为V* V662 CAS)形成的高质量X射线二进制系统,也是最慢的旋转中子星(NSS)之一,自旋周期约为2.6小时。这提供了一个难得的机会来研究紧凑型物体每个单独脉冲中积聚的有趣细节。在本文中,我们分析了200 k的Chandra光栅数据,分为围绕轨道周围的9个不间断的观测值。通过轨道吸收柱的变化表明,相对于观察者,轨道倾斜约40°,并且伴随的质量损失率为〜8。6·10 - 7m⊙yr -1。NS脉冲的峰表现出较大的脉冲到脉冲变异性。其中三个显示出从更明亮的政权到较弱的发展。我们提出,该来源中康普顿冷却的效率在整个累积周期中浮动。在磁层内物质的显着耗竭后,由于沉降速度约为2倍,低于自由下落速度,因此源逐渐积累了物质,直到密度超过临界阈值。密度的这种增加触发了向更有效的康普顿冷却方案的过渡,从而导致质量增强率更高,从而导致亮度提高。
目标。我们使用光学选择的无线电(RL)和射电Quiet Quasars样本(在Redshift范围0.15≤z≤1。9)我们已经与VLA-First Survey目录进一步交叉匹配。我们样品中的来源具有宽Hβ和Mg II发射线(1000 km / s 15 000 km / s)。,我们使用多波长档案数据和Astrosat望远镜的靶向观测来构建了我们宽线类星体的宽波光谱分布(SED)。方法。我们使用最先进的SED建模代码CIGALE V2022.0来对SED进行建模,并确定类星体宿主星系的最佳物理参数;也就是说,他们的恒星形成率(SFR),主要序列恒星质量,散发性,灰尘,电子折叠时间和恒星人口年龄所吸收的光度。结果。我们发现,我们来源的宿主星系的发射在总亮度的20%至35%之间,因为它们主要由中央类星体主导。使用最佳拟合估计值,我们重建了我们的类星体的光谱,这在复制相同来源的观察到的SDSS光谱方面表现出了显着的一致性。我们绘制了我们的类星体的主要序列关系,并注意它们与星形星系的主要顺序显着远离。此外,主要序列关系显示了我们的RL类星体的双峰性,表明Eddington比率隔离的种群。结论。我们得出的结论是,对于类似的恒星质量,Eddington比率较低的样本中的RL类星体往往降低了SFR。我们的分析为研究类星体的宿主星系并从宿主星系角度解决无线电二分法问题提供了完全独立的途径。
具有中子星(NS)增生器的超X射线源(ULX)对传统的积聚模型构成了挑战,引发了关于几何光束和强磁场(B)的作用的争论。在存在强B的情况下,汤姆森横截面的还原导致了爱丁顿极限的修改;因此,预计它会显着影响NS-ulxs的观察性外观。我们使用种群合成模型研究了这种修饰的作用,并探索了其对观察到的NS-ulxs的X射线光度函数,旋转速率和流量能量的影响。我们的结果表明,与以前相比,新的处方允许NS-ulxs实现具有温和束缚的超级仪表,从而改善了与观察的一致性。此外,它扩大了旋转速率的范围,从而使NS-ULX的条件更加多样化,从而在增生速率和磁场上。更重要的是,减少的光束会增加观察到风力驱动星云(例如NGC 5907 ulx-1)内NS-ulxs的可能性。我们的发现强调了需要考虑B效应的必要性,独立于基于几何光束或强b的通常方法。最后,我们呼吁磁层积聚处方,这些处方可以集成在种群合成代码中。
摘要流量参数的准确测量通常取决于传感器的可访问性。光流评估技术,例如粒子图像速率(PIV)和粒子跟踪速度计(PTV),仅限于光学上透明的介质。但是,许多工业过程都涉及不透明的媒体,需要采用替代方法。本研究介绍了X射线粒子跟踪速度法(XPTV)的开发和应用,以研究此类介质中的流量。具体来说,检查了融合细丝制造(FFF)打印机的喷嘴内的流量。这项工作的新贡献是使用XPTV对加热流进行的首次分析,通过在聚合物流中引入钨粉作为对比剂来实现。该研究成功地可视化了抛物线速度曲线,证明了该方法的功效。
实质性研究旨在开发高亮的短脉冲X射线源,例如电子同步物,免费电子激光器,汤姆森散射设备等,这些设备证明了它们的优势。但是,它们要么是成本不稳定,不稳定和/或用于日常成像的光子通量不足。在这里,我们关注的是高强度的Bremsstrahlung,该大体适用于体内和生产线中的串联物质检查。bremsstrahung主要是通过聚焦电子束与靶材料原子核的相互作用出现的。医疗实践中0.05%的订单的低能量转换效率(包括辐射屏蔽和X射线过滤器)使热量管理成为基本问题。空间图像分辨率通常受到最小焦点大小的限制,而焦点斑点大小又由所需的X射线输出以及从极限密度输入和热循环的X射线管的常规静止和旋转阳极侵蚀确定。
图 4. 10-12 周内纵向监测射线不透性、机械强度、钆 (Gd) 和双嘧达莫 (DPA) 释放情况。(A) 以亨斯菲尔德单位 (HU) 为单位测量的射线不透性随时间推移逐渐降低,与机械强度 (B) 的下降趋势相吻合,机械强度以千克 (kg) 为单位评估为断裂载荷。(C、D) Gd 和 DPA 含量稳步降低,反映出它们在研究期间的控制释放。PPDO,聚对二氧杂环己酮。