X射线 - 形式的相互作用本质上是弱的,X射线的高能量和动量对应用强光 - 耦合技术构成了巨大的挑战,这些耦合技术在更长的波长中非常有效地控制和操纵辐射。技术,例如在金属丝接口处或纳米结构内的光和电子之间增强的耦合,以及purcell效应(在金属表面附近自发发射,因此由于其根本不同的能量和动量尺度而不适用于X射线。在这里,我们提出了一种新的方法,用于通过将X射线光子与紫外线(UV)中的spps纠缠到铝制的自发参数下偏见(SPDC)中,将X射线耦合到表面等离子体极化子(SPP)。如本工作所示,SPP的不同特征印在检测到的X射线光子的角度和能量依赖性上。我们的结果突出了使用spps控制X射线的潜力,从而解开了激动人心的机会,以增强X射线 - 物质相互作用并探索具有原子尺度分辨率的等离子现象,这是X射线独特启用的功能。
– 近期物理学研究最令人着迷的方面之一是人们熟悉的光学定律逐渐扩展到极高频的 X 射线,直到现在,光领域中几乎没有一种现象在 X 射线领域找不到平行。反射、折射、漫散射、偏振、衍射、发射和吸收光谱、光电效应,光的所有基本特性都被发现也是 X 射线的特性……
其他天体和深空 • 将 LunaNet 框架扩展到地月之外,用于行星际和深空网络 • 高光子效率光学链路,用于 100s Mbps 直接到地球下行链路 • 高性能原子频率标准,实现单向度量跟踪数据 • 通过观察发射 X 射线的毫秒脉冲星,实现类似 GPS 的自主机载导航和计时 • 来自可用通信链路的度量跟踪数据
1927 年诺贝尔奖颁奖词:根据爱因斯坦的光电效应理论,光由量子组成,量子是具有与特定频率相对应的确定能量的“包”。光量子称为光子。1922 年,当阿瑟·康普顿将 X 射线光子照射到金属表面时,电子被解放出来,X 射线的波长增加,因为部分入射光子能量被转移到电子上。实验证实,电磁辐射也可以描述为遵循力学定律的光子粒子。
产生 X 射线的第一步是通过 25-35 kV 的大电位差加速电子。当电子撞击钼靶时,它们会通过称为轫致辐射(断裂辐射)的过程减速。当小质量带电粒子(例如电子)经过大质量带电粒子(例如钼原子核)附近时,就会产生 X 射线。电子通过多次散射原子核而快速减速,从而导致发射多条 X 射线,在极少数情况下,当电子将其所有动能都交给单个原子核时,会发射出一条高能 X 射线。最后一个过程对应于 X 射线能谱的终点能量,这可通过查看图 2 中所示的光谱左端来观察。钼表面(阳极)与入射电子束成一定角度,以利于在特定方向产生 X 射线。图 2 显示了钼靶的能量谱。距离其产生点不远处是一个准直管,它允许一条狭窄的水平 X 射线带通过,到达结晶的 NaCl 靶。当 NaCl 靶(搁置在测角仪上)相对于入射 X 射线的角度倾斜刚好正确(θ)时,就会发生建设性干涉,并且在位于 2 θ 角的盖革-穆勒管中可以观察到增加的计数率(计数/秒)。如图 3 所示。
谐振非弹性X射线散射(RIX)是一种使用高度强烈和单色X射线的光子散射光谱技术,以探测感兴趣的材料的激发。通过在元素的谐振阈值中有选择地工作,RIX可以在能量摩托车空间中进行探测多种局部激发,集体激发或有序状态,例如D-D激发,镁,轨道,等离子,等离子,等离子,音子,电荷和电荷密度 - 密度 - 密度 - 密度波。
对软物质领域的兴趣,特别是乳液和微乳液。跨学科和多尺度实验方法的动机。将特别理解在乳液和微乳液制定方面的实验经验(灰度层状相)。分散系统的物理化学表征的知识,特别是通过显微镜技术(包括共聚焦显微镜)和光和X射线的扩散。在有机合成的两亲分子和聚合物的经验中,将构成一种资产。涉及的科学系统和学科使这一主题高度跨学科。
3。柔性乙状结肠镜检查:一种程序,将小,细长,柔性,照明的管插入直肠中,以检查直肠和下部的结肠(sigmoid colon)(sigmoid colon)(sigmoid colon),以了解任何息肉或癌症的迹象。4。计算机断层镜(CTC)/虚拟结肠镜检查:一种非侵入性成像测试,使用CT扫描来创建结肠和直肠的详细图像。(频率:每5年一次。)5。双对比钡灌肠(DCBE):将钡和空气引入结肠和X射线的成像测试,以识别异常。(频率:每5年一次。)
• 电流施加到阴极(灯丝)上,使其升温并产生电子云 • 电子束产生的能量是原子受激发而将电子从轨道上释放出来的结果。 • 这些电子现在可以自由地成为电子束的一部分。 • 然后,该电子束通过高压场加速,获得速度和能量,直到电子撞击目标,在那里该能量被转换成热量和 X 射线。 • 转换成热量的能量通过阳极辐射,剩余的能量以 X 射线的形式释放出来。 • 该能量约为电子束产生的总能量的 0.1 - 2%。 • 该 X 射线是电磁波形式的能量。