非局域性是一个引人注目的概念,自量子理论诞生之初 [1,2] 至今,它一直吸引着学术界越来越多的兴趣。无论是通过贝尔非局域性 [3,4]、量子操控 [5,6]、一般的量子纠缠 [7],还是更广泛的量子不和谐 [8–11],非局域性一直是量子基础研究的核心。这是有原因的:由于多个实验证实了贝尔不等式的量子违反 [12–19],人们相信量子力学与经典力学有着根本的不同。这些研究带来了理论和技术突破 [20–28]。此外,甚至可以讨论时间中的纠缠 [29–33]。上述类型的非局域性与系统的制备(或制备和测量)有关。因此,它可以称为运动非局域性。使用模变量的概念引入的另一种非局域性[34]与量子系统遵循的运动方程有关,因此称为动态非局域性。尽管这些变量非常有前景,正如在连续系统量子信息的首次应用中已经证明的那样[35-38],但它们尚未得到社区相当一部分人的充分关注[39]。文献中考虑的最常见的模变量类型是模位置和模动量[35-48]。事实上,设ℓ和p0分别为长度和动量维数的参数,模算子
人脑由 100 × 10 9 个神经元组成,它们相互连接,充当人体的控制系统。对人脑的研究从公元前一世纪就一直在进行。1最近,这引发了脑机接口 (BCI) 的研究。2 BCI 设计需要分析从头皮记录下来的脑电活动作为脑电图 (EEG) 活动。EEG 信号根据 EEG 电极位置和人体动作而变化。BCI 使用这些变化作为控制设备的特征或命令。传统医疗级 EEG 系统如 NeuroScan TM 、BioSemi TM 和 g.Tec TM 可在医院和医疗诊所找到,用于诊断一系列疾病,如癫痫、睡眠障碍和其他脑相关疾病。3,4 这些 EEG 系统由于其高质量和可靠性已经使用了很多年。最近,一些廉价的消费级无线脑电图系统已在家庭中使用,用于冥想和简单的脑电图诊断(NeuroSky TM 、Emobio TM 、Muse TM 、Emotiv TM 等)。与传统脑电图系统相比,这些无线脑电图系统不仅更便宜,而且更简单、更快捷
色心是晶体中的点缺陷,可为分布式量子信息处理应用提供通向长寿命自旋态的光学接口。色心量子技术面临的一个突出挑战是将光学相干发射器集成到可扩展的薄膜光子学中,这是在商业代工工艺内进行色心大规模光子学集成的先决条件。本文,我们报告了将近变换限制的硅空位 (V Si ) 缺陷集成到在 CMOS 兼容的 4 H -绝缘体上碳化硅平台中制造的微盘谐振器中。我们展示了高达 0.8 的单发射器协同性以及来自耦合到同一腔模的一对色心的光学超辐射。我们研究了多模干涉对该多发射器腔量子电动力学系统的光子散射动力学的影响。这些结果对于碳化硅量子网络的发展至关重要,并通过将光学相干自旋缺陷与晶圆可扩展的、最先进的光子学相结合,弥合了经典量子光子学之间的差距。
报道了在非二元分级多模具纤维中从可见的到中红外(700–2800 nm)产生的两幅度超脑(700–2800 nm)。纤维设计基于纳米结构的核心,该核心由两种类型的铅孔 - 孔 - 玻璃棒,具有不同的折射率。与二氧化硅纤维相比,这种结构产生了有效的抛物线指数,扩展的传输窗口和十倍非线性。使用正常和异常分散体的波长在波长下进行脉搏泵,对定期自我成像播种的超核生成机制和不稳定性进行了详细的研究。显着地,发现高功率状态下合适的注射条件会导致输出光束发射显示出从非线性模式混合中自我清洁的明确签名。实验观测是使用广义非线性schrödinger方程的时空3+1d Nu-Merical模拟来解释的,并且模拟光谱与完整的两座光谱带宽的实验非常吻合。这些结果证明了一种新的途径,可以在中红外产生明亮的超人物光源。
摘要:本文使用使用FlexSIM程序的计算机模拟在铸造厂中介绍了供应链管理的优化。作者在生产过程中分析了与外部实体的合作,重点介绍了原材料,运输服务和存储成本的结算。特别关注将分包商集成到运营生产计划中的生产计划。利用3D Flexsim环境,它们展示了一种优化的模拟模型,以最大程度地减少生产成本,运输和存储对铁铸造生产所必需的合金元素的成本。案例研究说明了在铸造生产过程中,在精炼供应链管理中有效地使用了计算机模拟。关键字:供应链管理,优化,计算机模拟,Flexsim
我们分析了结合小处理器和存储单元的量子计算机架构的性能。通过关注整数分解,我们显示了使用带有最近邻居连接的Qubits平面网格相比,加工量量数的几个数量级。这是通过利用时间和空间多路复用的内存来实现的,以在处理步骤之间存储量子状态。具体而言,对于10-3的特征物理门错误率,处理器周期时间为1微秒,分解一个2 048位RSA整数在177天内可以在177天内使用3D仪表颜色代码,假设阈值为0。75%的处理器用13个436个物理Qubits制造,并且可以存储2800万个空间模式和45个时间模式,并具有2小时的存储时间。通过插入其他错误校正步骤,证明1秒的存储时间足以使运行时的成本增加约23%。较短的运行时间(和存储时间)可以通过增加处理单元中的量子位数来实现。我们建议使用用超导量子台制成的处理器与使用稀土离子掺杂的固体中的光子回声原理的处理器之间的微波接口实现这种体系结构。
印度丘钛系一家于印度注册成立的公司,主要从事摄像头模组业务并同时从事少量指纹识别模组业务,由保留集团中的Q Technology (Great China) Inc. (「 丘钛大中华」)及Kunshan Q Technology (Hong Kong) Limited (「 香港丘钛」)合计持有100% 股权。为划分分拆集团和保留集团之间的摄像头模组业务和指纹识别模组业务运营,昆山丘钛中国通过其附属公司向丘钛大中华及香港丘钛收购印度丘钛100% 的股权,并向印度政府提交了股权转让申请。此外,分拆集团与保留集团已签署一份委托经营管理协议,在上述股权转让获印度政府批准之前,由分拆集团通过委托经营管理方式对印度丘钛进行控制。同时,丘钛大中华及香港丘钛已向印度政府提交申请于印度设立一家生物识别公司,以用于向印度丘钛收购印度丘钛的指纹识别模组资产业务(「 新公司设立」)。
表示芯片与环境之间的接触面。对于两种类型的 SMD 封装系列,可以使用两种类型的引线框架精加工:后镀和预镀。对于后镀系列(即裸铜/银点),电镀工艺是强制性的,以确保封装在印刷电路板 (PCB) 上的可焊性。对于预镀系列,由于多层精加工结构(例如 NiPdAu)可以跳过电镀工艺,从而保留封装在 PCB 上的可焊性,从而增强
摘要 — 本文介绍了一种毫米波多模式雷达发射机 IC 的架构,该架构支持三种主要雷达波形:1) 连续波 (CW/FMCW);2) 脉冲;3) 相位调制连续波 (PMCW),全部来自单个前端。该 IC 采用 45 纳米 CMOS 绝缘硅片 (SOI) 工艺实现,可在 60 GHz 频段运行,集成了宽带三倍频器、两级前置放大器、两个功率混频器和混合信号基带波形生成电路。通过配置功率混频器和相关波形基带电路,可实现多种模式下的发射机雷达运行。这种方法的一个重要优势是,总信号带宽(雷达的一个关键性能指标)仅受脉冲生成中 RF 输出节点的限制。还提出了一种基于电流复用拓扑的新型宽带三倍频器设计技术,用于 LO 生成,输出分数带宽 > 59%。 CW 模式下完整 TX IC 的晶圆上测量结果显示,54 至 67 GHz 的平均输出功率为 12.8 dBm,峰值功率为 14.7 dBm,谐波抑制比 > 27 dB。脉冲模式下的测量显示可编程脉冲宽度为 20 至 140 ps,相当于 > 40 GHz 的雷达信号带宽。本例还演示了 PMCW 模式操作,使用 10 Gb/s PRBS 调制雷达信号。该 IC 功耗为 0.51 W,占用 2.3 × 0.85 mm2 的芯片面积(不包括焊盘)。
据说我们的物种使用助记符(“记忆的魔法”)在大脑中刻有大量信息。然而,尚不清楚助记符如何影响记忆和神经基础是什么。在这项脑电图研究中,我们研究了助记符训练是否提高了加工效率和/或改变编码模式以支持记忆增强的假设。通过22天的数字图像助记符(世界一流麦克努斯主义者使用的定制记忆技术)进行22天的培训,一组儿童在训练后显示出短期记忆的增加,但增益有限。这种训练导致了定期的奇数神经模式(即,在序列中数字与奇数位置的数字编码期间,P200增强和theta功率的增强)。至关重要的是,P200和Theta功率效应预测了训练引起的记忆力的改善。这些发现提供了表明,表明弹药如何改变了功能性脑组织中反映的编码模式,以支持记忆增强。