在每个时代,技术发现都带来了希望和风险。很少有世界以我们今天看到的速度和规模经历技术变革。从纳米材料中比人毛的宽度小五万倍到商业卫星和部署在外太空中的其他私营部门技术,破裂迅速重塑了市场,社会和地缘政治。更重要的是,美国技术政策不是像以前那样的独特政府省。相反,发明人和投资者正在做出巨大政策后果的决定,即使他们并不总是意识到这一点。人工智能(AI)算法都充满了有关哪些结果且不属于哪些结果的政策选择。几乎所有新技术,从新药到建造水下研究无人机,都有商业和军事应用。私营部门的投资也同时通过开发新的能力,供应链和依赖性以及寻求可能无法为长期国家利益提供的商业机会而同时产生国家优势和漏洞。
因此,我们对 RuO 2 晶体进行了极化和非极化中子衍射实验,这些实验通过磁化和电导测量以及 X 射线衍射进行表征 [8]。单晶采用两种不同的传输分子通过化学气相传输生长。此外,通过退火商业化合物获得了粉末样品。对 D9、D3 和 IN12 进行了中子实验,并在 Bruker D8 venture 衍射仪上研究了晶体结构。我们无法在低至 2K 的温度下确认我们晶体中提出的结构扭曲。在 X 射线和长波长中子实验中,没有超结构反射 [3] 破坏金红石型结构的对称性。在短中子波长下观察到此类峰,但可归因于多重衍射。在我们的晶体中,钌空位的数量低于百分之几。极化中子实验并未表明对于所提出的传播矢量 ⃗ k =(0,0,0) [3] 存在磁布拉格反射。在我们的实验中,即使是有序矩比声称的 [3] 小五倍的磁序也会产生显著的强度。在我们的化学计量样品中可以排除这种反铁磁序 [8]。[1] L. Smejkal 等人,2022 年,Phys. Rev. X 12(3),031042。[2] L. Smejkal 等人,2022 年,Phys. Rev. X 12(4),040501。[3] T. Berjilin 等人,2017 年,Phys. Rev. Lett. 118,077201。[4] L. Smejkal 等人,2023,物理。莱特牧师。 131, 256703。 [5] A. Smolyanyuk 等人。 ,2024,物理。 Rev. B. 109 , 134424. [6] M. Hiraishi 等人。 ,2024,物理。莱特牧师。 132, 166702。 [7] P. Keßler 等人。 ,2024 年,npj 自旋电子学 2,50。 [8] L. Kiefer 等人。 ,2024 年,arXiv,2410.05850。
从十八世纪开始,断口学就被广泛应用于研究金属材料断裂表面的宏观外观 [1],而从十九世纪末开始,断口学又广泛应用于研究脆性材料,例如陶瓷和玻璃 [2]。然而,模拟技术只适用于固态材料 [3,4]。裂纹发生后的断口形貌信息可用于确定裂纹起始区。本文介绍了在对不合格芯片进行故障分析时获得的一些结果。图 1 所示的结果包括微尺度断口学特征,例如扭曲纹 (th)、速度纹 (vh)、瓦尔纳线 (w)、条纹 (s) 和停止线 (a) [5]。施加在芯片上的驱动力可以是直接的,也可以是间接的。当驱动力直接接触芯片时,它通常与裂纹起始区有关,例如从芯片侧壁分支的裂纹、机械分离晶圆的效应、超声波引线键合的键合焊盘上的凹坑效应或由于芯片放置不当导致的芯片边缘脱落。当驱动力与芯片间接接触时,在树脂去封装之前对封装进行宏观分析对于观察封装上的划痕或压痕等机械特征至关重要。这对于防止对断裂机制的误解至关重要。本文的目的是展示去封装的方法和断口分析的应用,作为理解发光二极管 (LED) 芯片裂纹起源的新视角。如今的 LED 芯片的长宽比至少比硅集成电路 (IC) 小五倍。LED 芯片封装在杯状预制硅胶中以增强光反射,而不是使用带有平底 IC 的深色环氧树脂封装剂。用于分析硅 IC 芯片裂纹的无损技术是 X 射线显微镜和扫描声学显微镜 (SAM) [6,7]。LED 的小长宽比对 X 射线显微镜处理和寻找裂纹线是一个挑战,我们最不希望丢失客户退货样品。SAM 正在传输和检测反射声波;这在平面 IC 封装中效果很好
