联合国裁军研究所(UNIDIR)是联合国内的一个自治机构,负责开展裁军和安全研究。裁研所总部位于瑞士日内瓦,是裁军和不扩散双边和多边谈判的场所,也是裁军谈判会议的所在地。该研究所致力于研究与各种现有和潜在军备以及全球外交和当地紧张局势和冲突有关的当前问题。裁研所是研究界和政府之间的桥梁。自 1980 年以来,该研究所一直与研究人员、外交官、政府官员、非政府组织和其他机构进行合作。该研究所的活动资金由政府和捐助基金会捐助。
1 欧安组织关于小口径武器和小口径武器的一致性文件,小口径武器类别包括武装部队或安全部队个人使用的通用武器:左轮手枪et 手枪 à自动充电;燧发枪和卡宾枪;米特莱特;突击燧发枪; et mitrailleuses légères。武装部队类别包括武装部队成员或安全部队成员的一般用途:卢尔德军用兵;长枪手榴弹portatifs、可移动的ou montés; Antiaériens portatifs 经典;佳能 antichars portatifs;无火燧发枪;长矛导弹和长矛罗盖特反查尔斯波塔蒂夫斯;长矛导弹 Antiaériens portatifs; et mortiers de caliber inférieur à 100 mm。
Simons天文台的小孔望远镜的开发和表征,用于高精度测量宇宙微波背景极化(Simons天文台实验性小孔望远镜的开发和评估,用于对宇宙微海背景辐射的最高光谱极化的观测)
摘要 本章讨论了在典型的海上平台上为小口径管道 (SBP) 的过程安全管理 (PSM) 开发数字孪生 (DT) 的框架。SBP 的 PSM 期间的一个重要问题是,由于过程设施上的 SBP 数量非常多,因此很难在小口径连接 (SBC) 处放置传感器以进行应力估计。在没有应力值的情况下,很难估计 SBC 的剩余疲劳寿命 (RFL),这进一步阻碍了检查计划。因此,在本章中,采用由 CFD、FEA 和机器学习组成的方法来获得用于 SBC 应力估计的虚拟传感器。虚拟传感器的输入是压力和流速等工艺参数,而输出是 SBC 处的最大冯-米塞斯应力。随后,使用概率裂纹扩展定律与贝叶斯网络相结合来开发 DT,用于 SBP 的 RFL 估计,进而用于获得可靠性曲线和检查计划。在线部署开发的 DT 将提供最新的 RFL 估计和检查计划,然后可用于 SBP 的 PSM。
使用固态霍尔传感器阵列对小口径管道系统中的涡流进行实时可视化的回顾 J. Lee、C. S. Angani、J. Kim、M. Le,朝鲜大学,韩国 Hwa Sik Do,韩国电力公司,韩国 摘要 小口径管道系统是核电站 (NPP) 热交换器的重要组成部分,例如蒸汽发生器 (SG),其中的压力和温度非常高。这些条件会促使裂纹的产生和快速扩展,从而降低管道质量并威胁系统的完整性。几十年来,人们开发和改进了不同的 NDE 系统和探头,以应用于 SG 评估,例如用于实时检查裂纹的线轴探头、电动旋转饼线圈、X 探头和磁性摄像机。磁相机由固态磁场传感器阵列组成。根据传感器阵列的排列方式,开发了不同类型的传感器阵列,并对其进行了分类,以用于不同的应用,例如线性集成霍尔传感器阵列 (LIHaS)、区域型集成霍尔传感器阵列 (AIHaS)、线轴型集成霍尔传感器阵列 (BIHaS) 和圆柱型集成霍尔传感器阵列 (CIHaS)。本研究回顾了用于评估 SG 缺陷的线轴型磁相机的开发。使用霍尔传感器阵列可以提供具有高空间分辨率的大面积检查。传感器的高空间分辨率优势使得裂纹评估变得简单可靠。所提出的磁传感器阵列用于检测小口径管道的内径 (ID)、外径 (OD) 和周向应力腐蚀裂纹。准备了两种样品,铜和钛合金,以验证磁相机的有效性。成功检测到由于应力腐蚀裂纹引起的扭曲磁场图像并估计了裂纹体积。结果表明,该技术可以成为核电站中 SG 的无损检测的潜在工具。简介 管道结构在大型工业结构中起着关键作用,例如发电厂、石化厂、石油炼油厂和天然气加工厂 [1]。例如,用作核电站热交换器的小口径管道系统。SG 是核电站最关键的部件,它们在高温和高压等极其恶劣的条件下运行,这些条件往往会加速流动腐蚀 (FAC)、应力腐蚀开裂 (SCC) [2]。小由此可能引发裂纹,并可能导致灾难性故障或工厂紧急停机。因此,为了确定结构的可靠性和经济可行性,NDT 是检测和评估结构损坏程度的有效技术。因此,快速准确地检查管道中的裂纹或缺陷对于防止故障非常必要。SG 通常采用奥氏体镍铬基高温合金和非铁磁性钛合金制造。通常,核电站安装 2 至 4 套 SG 管,每套由 3,000 至 16,000 根管组成,SG 直径约为 20 毫米,长度约为 21 米 [3, 4]。几十年来,涡流检测 (ECT) 已可靠地应用于无损检测领域,线轴探头已成为 SG 和热交换器管道常规检查的行业标准 [5, 6]。线轴探头非常可靠,可用于量化体积缺陷,例如微动磨损和点蚀,相反,它们不适合检测周向裂纹 [7]。此外,ECT 需要很高的检查技能来分析和评估数据 [8, 9]。
由于发育中的大脑在结构、代谢和功能方面发生快速变化,儿科神经成像具有挑战性。由于儿童体型小且发育不成熟,需要一支经过专门培训的团队来为儿童制作高质量的诊断图像。患者的动作、配合和医疗状况决定了所使用的方法和设备。根据每个孩子的年龄和功能状态量身定制的方法,并由专门的工作人员、成像硬件和软件进行适当组合是关键;这些方法包括喂食和襁褓等低技术技术、专门的小口径 MRI 扫描仪、MRI 兼容孵化器和新生儿头部线圈。新的预处理和后处理技术还可以补偿通常会降低新生儿扫描质量的运动伪影和低信号。
充血反应 1,8,10,12,13,自从通过光谱学发现以来,引起了人们的浓厚兴趣 1,6,8–18。19 两种无标记成像技术,功能性磁共振成像 6,10,15–17 (fMRI) 和宽视野(反射模式)光学显微镜,1,11–14 都为理解初始下降做出了宝贵贡献。 fMRI 是目前神经成像的主流,它通过检测顺磁性脱氧血红蛋白,非侵入性地获得大脑皮层范围内的大脑功能映射。4,10 即使是用于小动物成像的小口径形式,fMRI 也缺乏空间分辨率来辨别直径 < 50 μ m 的脑微血管的动态,20 初始下降被认为是起源于此处。 8、10 理论上,宽视野光学显微镜具有足够的空间分辨率,但在分辨深层血管时,往返光学散射严重,对微小吸收变化的灵敏度低;21 它也缺乏深度分辨率。2 因此,初始倾角现象仍未得到充分探索。6、12、15
心血管疾病(CVD)是世界上最常见的疾病之一,具有高致病性和高死亡率的特点(Vong等,2018;Wang等,2022a;Qian等,2021)。CVD的临床治疗主要包括三种方式:药物治疗,这是最广泛的治疗方式,也是CVD治疗的基础;介入治疗,包括射频消融和心脏起搏治疗;外科治疗,包括搭桥治疗和心血管移植(Abdelsayed等,2022;Lunyera等,2023;Krahn等,2018)。血管移植主要用于恢复或建立新的血流通路,以维持或改善组织或器官某个区域的血液循环,例如因创伤或切除导致血管段缺损,或动脉栓塞或淋巴阻塞而需要“搭桥”形成循环系统的情况(Xing et al.,2021;Zhao et al.,2023)。血管移植要求供应血管具有与受体血管相同的外径和足够的长度。移植物也面临供区血液循环受损(缺血或淤滞)等问题。因此,迫切需要高性能的人工血管移植来替代自体血管进行血流重建。目前小口径人工血管(<6 mm)主要用于冠状动脉搭桥术、外周血管搭桥术、血管创伤(缺损≥2 cm)、血液透析的组织血管通路、器官功能恢复等(Asakura等,2019;Wang等,2021;Wu等,2018),但人工血管移植可导致吻合口血栓形成、内皮增生等严重并发症,影响管腔通畅性(Oliveira等,2020;Teebken和Haverich,2002;Zhuang等,2020)。此外,目前的人工血管支架虽然具备一定的力学性能和生物相容性或能提供血管再生所需的生化信号,但在模拟天然血管的结构和功能方面还存在明显的不足,现有的支架往往不能充分模拟天然血管网络的拓扑结构,并会诱导细胞爬行,从而影响血管支架在临床应用中的效果(Liang等,2016;Cheng等,2022)。因此,为提高小口径人工血管的通畅性,通过材料选择、表面改性等提高生物相容性/内皮化/力学性能成为重点研究方向。静电纺丝技术可以制备具有高比表面积和孔隙率的微/纳米纤维,可以模拟细胞外基质,促进细胞黏附、增殖和分化,为细胞提供良好的生长环境。该接收装置的设计可以制备不同直径的管状结构,是制备小直径人工血管支架的理想方法(姚等,2022;郭等,2023;宋等,2023;王等,2022b)。特别是利用该技术制备的血管支架可以负载生物因子,提高血管支架的生物相容性,促进血管快速内皮化。虽然目前的人工血管支架已经具备一定的力学性能、生物相容性或能提供血管再生所需的生化信号,但如何结合现有支架的优势,将生物因子负载于血管内,实现血管再生,是当前血管支架研究的热点。
经常询问的问题问:什么是环境噪音?A.环境噪声是外界噪声污染的摘要,通常是由运输,工业和娱乐活动产生的。通过军事训练和测试活动产生的环境噪声(即军事武器射击或武器系统操作和飞机)通常被称为DOD内部的操作噪声。因此,这些术语可以互换使用。Q. 环境噪声暴露的不利影响是什么? A. 环境噪声被归类为低于需要听力保护的声音水平,但足够高以产生其他负面影响和/或干扰生活质量。 噪声的不利影响可能包括烦恼,睡眠障碍,学术表现降低和语音干扰。 请注意,有些人可能会受到特定噪音的极大影响,而另一些人根本没有效果。 Q. 军队在解决环境噪音方面做了什么? A. 军队通过实施兼容使用区(ICUZ)程序来解决环境噪声。 该程序的中心是ICUZ研究。 一项ICUZ研究分析了与军事训练和测试操作相关的噪声暴露,并提供了土地使用指南以兼容。 开发ICUZ研究的目标是帮助我们的邻居了解安装中散发出的噪音的性质,以及我们如何以确保我们的军事准备的方式更好地管理噪音。Q.环境噪声暴露的不利影响是什么?A.环境噪声被归类为低于需要听力保护的声音水平,但足够高以产生其他负面影响和/或干扰生活质量。噪声的不利影响可能包括烦恼,睡眠障碍,学术表现降低和语音干扰。请注意,有些人可能会受到特定噪音的极大影响,而另一些人根本没有效果。Q. 军队在解决环境噪音方面做了什么? A. 军队通过实施兼容使用区(ICUZ)程序来解决环境噪声。 该程序的中心是ICUZ研究。 一项ICUZ研究分析了与军事训练和测试操作相关的噪声暴露,并提供了土地使用指南以兼容。 开发ICUZ研究的目标是帮助我们的邻居了解安装中散发出的噪音的性质,以及我们如何以确保我们的军事准备的方式更好地管理噪音。Q.军队在解决环境噪音方面做了什么?A.军队通过实施兼容使用区(ICUZ)程序来解决环境噪声。该程序的中心是ICUZ研究。一项ICUZ研究分析了与军事训练和测试操作相关的噪声暴露,并提供了土地使用指南以兼容。开发ICUZ研究的目标是帮助我们的邻居了解安装中散发出的噪音的性质,以及我们如何以确保我们的军事准备的方式更好地管理噪音。其他程序元素包括通过公众宣传共享信息,以减少噪声影响并避免潜在的冲突,并采用有效的程序来处理噪声查询。Q. 如果我有担忧或投诉,我该与谁联系? A. 您的安装公共事务办公室通常是联系点。 他们的联系信息可在安装网站和/或社交媒体页面上找到。 几个装置还发布了培训活动的通知。 Q. 我家可以降低噪音水平吗? A. 降低噪声水平的降低高度取决于噪声源和结构中使用的构造/建筑材料的类型。 对于航空活动和小口径(手持式)武器,大多数建筑材料可以将噪声水平降低15-25 dB,具体取决于窗户是打开还是关闭。 可以通过填充和填充外部开口,安装隔音窗户和门以及在外墙和天花板上增加热绝缘来实现更大的降噪。 但是,由于低频含量(长声波),这种相同的缓解技术对拆除,炮或坦克产生的噪声不适用于噪声。Q.如果我有担忧或投诉,我该与谁联系?A.您的安装公共事务办公室通常是联系点。他们的联系信息可在安装网站和/或社交媒体页面上找到。几个装置还发布了培训活动的通知。Q. 我家可以降低噪音水平吗? A. 降低噪声水平的降低高度取决于噪声源和结构中使用的构造/建筑材料的类型。 对于航空活动和小口径(手持式)武器,大多数建筑材料可以将噪声水平降低15-25 dB,具体取决于窗户是打开还是关闭。 可以通过填充和填充外部开口,安装隔音窗户和门以及在外墙和天花板上增加热绝缘来实现更大的降噪。 但是,由于低频含量(长声波),这种相同的缓解技术对拆除,炮或坦克产生的噪声不适用于噪声。Q.我家可以降低噪音水平吗?A.降低噪声水平的降低高度取决于噪声源和结构中使用的构造/建筑材料的类型。对于航空活动和小口径(手持式)武器,大多数建筑材料可以将噪声水平降低15-25 dB,具体取决于窗户是打开还是关闭。可以通过填充和填充外部开口,安装隔音窗户和门以及在外墙和天花板上增加热绝缘来实现更大的降噪。但是,由于低频含量(长声波),这种相同的缓解技术对拆除,炮或坦克产生的噪声不适用于噪声。