20022财年2023财年2024财年2024财年2024财政部2024年颁布的总统申请/ BLI BLI名称$ 2.485亿美元2.55亿美元预算标记2.2551 $ 2.551亿美元$ 2.69999亿美元$ 19.999亿美元的房屋+/-($ 000SS)($ 000S)($ 000S)($ 000S)($ 000S)($ 000S)($ 000S)($ 000S)($ 000S)(000S)(000S)(000S)(000S)(000S)(000S)(000年)(000S)($ 000S)($ 000S)($ 000S)。消防研究与安全7,136 7,136 7,722 7,722 0 b。推进和燃料系统3,000 3,000 6,374 6,374 0 c。高级材料 /结构安全14,720 14,720 2,526 2,526 0 d。飞机糖霜2,472 2,472 3,960 3,960 0 e。数字系统安全3,689 3,689 7,109 7,109 0 f。持续空气8,829 8,829 8,425 8,425 0 g。飞行甲板/维护/系统整合人为因素14,301 14,301 15,646 15,646 0 h。系统安全管理/终端区域安全7,000 9,252 9,349 9,349 0 i。空中交通管制/技术操作人为因素5,911 5,911 6,389 6,389 0 J。航空医学研究11,000 9,000 12,205 12,205 0 k。天气计划13,786 13,786 19,220 19,220 0
1架飞机是可以通过从空气中获得支撑而飞行的机器,并受到空气密度和机器速度的影响。示例包括固定翼飞机,直升机,灯具,滑翔机和热气球。2辆车是依靠推力升降机的机器。示例包括商业太空发射车或火箭。3 FAA,“航空环境和能源政策声明”,77 FR 43137,43137(2012年7月23日)。 4在此框架纸中,术语飞机噪声和航空噪声是同义词。 术语是指飞机在行驶操作和着陆期间飞机和车辆产生的噪音。 在某些情况下,此定义也可能包括飞机起飞前由飞机和车辆产生的地面上的噪音。 5 FAA,FAA飞机噪声政策和研究工作的概述:有关为飞机噪声政策提供信息的意见请求,86 FR 2722(2021年1月13日)。 6语音干扰发生时,飞机噪音淹没或掩盖了语音,因此很难进行对话。 7睡眠干扰是指两种类型的睡眠中断:那些导致觉醒以及不会导致觉醒而是引起一定程度唤醒的。3 FAA,“航空环境和能源政策声明”,77 FR 43137,43137(2012年7月23日)。4在此框架纸中,术语飞机噪声和航空噪声是同义词。术语是指飞机在行驶操作和着陆期间飞机和车辆产生的噪音。在某些情况下,此定义也可能包括飞机起飞前由飞机和车辆产生的地面上的噪音。5 FAA,FAA飞机噪声政策和研究工作的概述:有关为飞机噪声政策提供信息的意见请求,86 FR 2722(2021年1月13日)。 6语音干扰发生时,飞机噪音淹没或掩盖了语音,因此很难进行对话。 7睡眠干扰是指两种类型的睡眠中断:那些导致觉醒以及不会导致觉醒而是引起一定程度唤醒的。5 FAA,FAA飞机噪声政策和研究工作的概述:有关为飞机噪声政策提供信息的意见请求,86 FR 2722(2021年1月13日)。6语音干扰发生时,飞机噪音淹没或掩盖了语音,因此很难进行对话。7睡眠干扰是指两种类型的睡眠中断:那些导致觉醒以及不会导致觉醒而是引起一定程度唤醒的。。
第 4 节。含义······················································· ·······································。 ······················································· ······················ ······················································· ·······································。 ······················································· ··········118
修订 2.0 日期:2019 年 7 月 31 日 初版 修订 3.0 日期:2022 年 1 月 31 日 将 SEI 列表重新格式化为表格格式,无技术内容更改。按顺序重新编号列表,修订 2.0 中的 SEI 编号移至主题作为参考。修订项目编号 2。修订项目编号 3。更新了 FAA 组织名称,小型飞机标准部门或 SASB 更改为政策和创新部门,飞机评估组或 AEG 更改为飞机评估部门或 AED。修订 4.0 日期:2022 年 8 月 15 日 删除第 4、8、9、10、13、15、16、36、38、43、44、45、46、47、52、79 号 修订第 1、11、12、17、27、29、35、48、56、57、58、63 号 增加注释和第 80 号 注:如果项目认证基础中任何修订前的 23-64 法规不足以或不适合解决新的设计变更,则必须使用适用的修订 23-64 法规以及 FAA 认可的合规方法。除非确定修订 23-64 不充分,否则不会发布新的特殊条件。
在担任高级技术专家的工作之前,阿什福斯女士是FAA运输局的国际分支机构计划经理。她的专业经验还包括Epic Aircraft,Maxviz Inc.,Lancair Company,自然资源研究所,McCauley配件部和美国空军研究实验室的工作。阿什福斯女士获得了学士学位威斯康星大学 - 麦迪逊大学的工程机制和硕士学位 赖特州立大学的材料科学与工程学。威斯康星大学 - 麦迪逊大学的工程机制和硕士学位赖特州立大学的材料科学与工程学。
申请人应知道,联邦航空管理局已发布备忘录,指出在飞机、滑翔机和飞艇外部安装乙烯基覆盖收缩包装存在安全问题,而油漆和除冰靴等其他外部装饰则不存在这些问题。这些问题包括重大甚至灾难性的危险,因此不接受获得联邦航空管理局现场批准的安装。只有联邦航空管理局 (FAA) 型号合格证 (TC)、修订型号合格证 (ATC) 和补充型号合格证 (STC) 才适用于此类安装。本备忘录不适用于放置在机身或尾翼有限区域上的乙烯基贴花或徽标。以下是安装乙烯基收缩包装覆盖物的安全问题,申请人必须对任何 TC/ATC/STC 申请进行评估:1. 未经适当的工程评估和/或测试,不得将乙烯基收缩包装放置在任何控制面或控制面突出部上:a.不考虑对颤振特性的影响(无论表面是否质量平衡)以及 b. 安装会改变相邻表面之间现有的间隙(有负载和无负载)。2. 切割乙烯基板以使其适合时划伤飞机蒙皮,这会导致裂缝,尤其是在增压飞机中。3. 堵塞燃油通风口、静压孔、铰链、排水孔等,使其无法工作或改变静压孔上的气流。4. 使用喷灯的明火涂抹材料。这对油箱和通风口、敏感天线,尤其是复合材料部件来说是一个问题,因为复合材料部件的固化温度远低于喷灯的温度。5. 遮盖必需的外部飞机标记和紧急出口。6. 乙烯基板在表面或旋转部件上的附着力丧失,卡住控制面或损坏发动机。7. 静电积聚导致油箱内或周围放电,并造成无线电/导航干扰。 8. 窗户和挡风玻璃上贴有透明乙烯基,影响飞行员的视线。9. 清除关键表面积冰的影响。10. 材料的可燃性,包括雷击,尤其是发动机排气口附近和发动机短舱周围。可燃性测试样本应从涂有乙烯基收缩包装的发动机罩/短舱上制作。11. 包装被雨水或冰雹剥落。12. 结构和外壳上的裂缝和腐蚀的遮盖。13. 安装有水龙头的乙烯基收缩膜的使用寿命。强制拆除前需要多长时间。14. 除冰液对薄膜的影响。政策备忘录可应要求提供。
违反航空规则,特别是违反气象飞行规则,可能会导致致命的后果。违反行为有时可以用故意冒险来解释,或者也可以是提高绩效和影响结果的策略的表现,例如节省时间或满足客户期望。本研究的目的是通过系统的文献综述,确定现有实证研究中的冒险行为类型,并确定与航空运营背景下的冒险相关的多层次前因。共确定了 4,742 条记录,经过筛选后,详细考虑了符合资格标准的 10 项研究,其中 3 项为定性研究,7 项为定量研究。审查仅包括已发表的作品,因此结果可能受到出版偏见的影响,但是,研究中的冒险类型与澳大利亚和新西兰事故报告中观察到的一致。主要的冒险行为是继续按照目视飞行规则 (VFR) 飞行,进入恶化的条件/仪表气象条件 (IMC)。多层次影响可以归类为两个总体主题,即“持续影响”和“接受风险/偏差正常化”。在所有研究中,一个或两个主题都始终贯穿整个研究结果,但应注意报告关联的相对频率。这篇评论指出了考虑社会和组织对冒险行为的影响的价值,并提出了未来研究的途径,特别是通过自我决定理论 (SDT) 视角探索影响。
空中空间技术演示2(ATD-2)国家航空航天局(NASA)团队与FAA和工业合作,继续为其在北德克萨斯州地区的最后3阶段现场评估做准备。ATD-2团队不再能够物理访问现场设施,因此已经过渡到远程培训和桌面练习,并通过虚拟平台制作了许多专门为每个现场用户设计的视频。另外,还要提供更大量的轨迹选项集(TOS)评估机会,如果持续交通量降低,ATD-2团队将系统部署到新的航空公司运营商中,为飞行操作员定义了其他用例,以增加TOS请求,并为替代ATC用户提高TOS Advisovals的新能力而开发了一种新的能力。NASA计划在2021年9月之前将最终技术转移到FAA和行业。
摘要。提出了几种用于小型航空燃气涡轮发动机概念设计阶段的重量计算的新相关回归模型。对获得的重量模型进行了相互比较,并与 Kuz'michev 模型进行了比较。根据获得的结果,得出了关于其可行性和应用范围的结论。新的相关回归模型在输入参数的数量以及预测重量的准确性方面有所不同。在工作过程中,创建了涡扇发动机 (TFE) 的主要数据和热力学参数数据库,该数据库由 92 台推力小于 50 kN 的小型 TFE 组成。根据收集到的统计数据,获得了允许在发动机设计初始阶段计算重量的公式。这些模型计算权重的误差在 10% 到 30% 之间。