第四次工业革命(“工业 4.0”或“I4.0”)在很大程度上推动了先进制造技术和工艺的应用。工业 4.0 目前正在培育“智能工厂”的概念,这将大幅提高劳动生产率,使成本相对较高的国家在全球市场上具有竞争力,特别是使制造业能够以小批量生产高价值产品。事实上,工业 4.0 可以通过自动化、机器人和人工智能等高科技推动因素解决香港的劳动力挑战。麦肯锡全球研究院估计,全球自动化每年可使生产率增长 0.8% - 1.4% 1 。制造业中约 64% 的任务可以实现自动化。普华永道预测,到 2030 年,工业 4.0 技术可为全球经济贡献 15.7 万亿美元 2 。
2012 年,美国卫生与公众服务部 (HHS) 设立了一项计划,旨在改善国内基础设施和专业技能,以生产医疗对策(如药物和疫苗),应对突发公共卫生事件。该计划名为先进开发和制造创新中心 (CIADM),最初由三个基地组成,负责快速生产应对流行病的对策等。在 COVID-19 疫情爆发之前,HHS 资助这些基地为其他制造商生产小批量药物。在 COVID-19 疫情期间,HHS 增加了资金投入,以储备产能,大规模生产产品,助力应对疫情。然而,HHS 表示,这些基地在可靠地大规模生产产品方面面临挑战,例如质量控制不佳,导致其中一个基地最终因交叉污染而关闭。
增材制造工艺起源于原型制造,并被称为快速原型制造,因为它们可用于快速制造样品部件。这意味着,除了现有工艺外,增材制造工艺还提供了另一种制造选择。每种制造工艺都有其特定的优势和劣势。在传统的制造工艺(例如机械加工)中,这些优势和劣势是已知的,并在设计和选择制造工艺时得到了适当的考虑。在增材制造工艺中,设计师在很大程度上仍然缺乏这种丰富的经验。与任何制造技术一样,增材制造也需要某些框架条件,以实现最佳的成本效益比。在未来,工业 3D 打印也将成为传统制造技术在技术上合理且经济的替代方案,用于某些制造任务。AM 尤其适用于小批量生产的复杂几何组件。
增材制造 (AM) 具有节省材料、大规模定制和小批量生产定制产品的优势,是一种强大且很有前途的制造技术。然而,目前 3D 打印过程缺乏质量管理,这是采用这种先进技术的主要障碍。3D 打印部件的几何不准确性是 AM 的主要质量问题之一,特别是当最终产品对其几何精度有较高要求时。在本研究中,使用激光线扫描仪开发了一种在直接能量沉积 (DED) 过程中进行连续监控的在线几何质量管理方法。我们提出的方法包括:(1)多层单道部件的实时逐道扫描,(2)打印过程中多层单道部件的在线几何提取,以及(3)在线绘制和比较设计模型和建造模型。
摘要:本文回顾了纳米颗粒技术在铝基合金增材制造 (AM) 方面的现状。对常见的 AM 工艺进行了概述。增材制造是制造业进步的一个有前途的领域,因为它能够生产出近净成型的部件,并且在最终使用之前只需进行最少的后处理。AM 还允许制造原型以及经济的小批量生产。通过 AM 加工的铝合金由于其高强度重量比,将对制造业非常有益;然而,许多传统的合金成分已被证明与 AM 加工方法不兼容。因此,许多研究都着眼于改善这些合金的加工性的方法。本文探讨了使用纳米结构来增强铝合金的加工性。结论是,添加纳米结构是改进现有合金的一种有前途的途径,并且可能对其他基于粉末的工艺有益。
精准农业。它使用地理信息系统、遥感技术、机器人技术、物联网和大数据等技术,实现精准种植、灌溉和除草。 传感器技术:传感器用于检测环境中的事件或变化,并将实时信息发送到其他电子设备,使生产者能够更有效地耕作,提高农场安全性和产品可追溯性 人工智能:农场周围的传感器向人工智能系统提供实时更新,该系统经过训练可以发送正确的响应,指导农民实现“完美”耕作,如果大规模使用,将产生巨大的效率。 区块链技术将安全透明地跟踪所有类型的交易。每次产品易手时,交易都会被记录下来,从而创建产品从制造到销售的永久历史记录 3D 打印使订单能够按需制造和小批量生产
摘要 — 随着工业 4.0 的快速发展,制造业工人处理机器、材料和产品的方式也发生了巨大变化。这种变化对未来劳动力的培训提出了一些严峻的挑战。首先,个性化制造将导致小批量和快速变化的任务。培训程序必须表现出敏捷性。其次,与人或机器人交互的新界面将改变培训程序。最后但并非最不重要的是,除了处理物理对象外,工人还需要接受培训以消化和响应制造现场产生的丰富数据。为了应对这些挑战,本文描述了一个针对制造业劳动力的人工智能辅助培训平台的设计。该平台将从机器和工人那里收集丰富的数据。它将在人工智能算法的帮助下捕捉和分析学员的宏观和微观运动。同时,还将涵盖与机器人/协作机器人互动的培训。混合现实将用于为学员创造现场体验。
Elettrorava 由工程师 Antonio Rava 于 1922 年创立,最初是一家机电车间。自 1975 年以来,我们涉足真空设备市场。我们在 20 世纪 50 年代进行了大量的研发工作,最终研发出了涡轮分子泵,其制造技术已授权给领先的国际真空公司 Varian。1987 年,我们设计了第一套薄膜沉积系统,从那时起,我们在基于 PVD 和 CVD 技术的沉积系统设计和制造方面获得了重要且巩固的专业知识。如今,我们设计、开发和制造定制解决方案,用于研发、试点和小批量生产应用。我们所有的产品均由科学委员会提供支持,该委员会在薄膜涂层和纳米技术领域发表了 300 多篇出版物。30 多年来,我们一直是客户的战略合作伙伴,拥有一支充满热情的工程师和技术人员团队,从设计到安装和持续维护提供端到端支持。
太阳能集热器大规模应用的主要限制因素之一是其价格。在大规模生产条件下,规模经济将小批量生产中存在的许多生产成本降至最低。这使得生产过程本身的限制和原材料价格成为高生产成本的主要驱动力。目前,由于对必要材料性能的要求严格且经常相互冲突,集热器设计中使用的材料选择相对有限。这反过来也限制了可以使用的生产工艺。在普通集热器中,对材料的热、机械和光学性能有严格的要求。这一问题的一个重要原因是集热器过热,即高停滞温度。停滞温度是集热器在没有流量通过集热器时暴露于最大入射太阳辐射和高环境温度时达到的最高温度。这可能是由于流动问题而发生的