愤怒的小鸟人工智能竞赛 (AIBIRDS) 的目标是构建能够比最优秀的人类玩家更好地玩新版愤怒的小鸟关卡的智能代理。该竞赛由本报告的作者于 2012 年发起,并与一些主要的人工智能会议同期举行,如 2013 年和 2015 年的国际人工智能联合会议以及 2014 年的欧洲人工智能会议。愤怒的小鸟是一款流行的基于物理的益智游戏,由 Rovio 公司开发,要求玩家使用弹弓将小鸟射向受物理结构保护的绿色小猪(见图 1)。玩家可以采取的操作很简单,即小鸟从弹弓上释放的点 (x, y) 以及释放后激活小鸟特殊能力的时间 (t)。一旦所有小猪都被消灭,关卡就算通过;大多数关卡最多需要五只小鸟即可通过。不同的鸟有不同的行为和特殊能力,虽然玩家知道鸟在弹弓上出现的顺序,但玩家无法操纵这个顺序。虽然这听起来很简单,但对于人工智能来说,这是一个非常困难的问题,因为动作空间是连续的,如果不模拟每个动作,就无法知道每个动作的确切结果。内置的物理模拟器可以确定性地
早期的肠道微生物群组成对仔猪的健康至关重要,影响了长期的微生物组发育和免疫力。在这项研究中,将肠道大坝的肠道菌群与三个生长阶段的三个芬兰猪农场中的后代进行了比较。在出生时(初始暴露阶段),断奶(过渡阶段)和屠宰(稳定阶段)分析了三个研究开发组(良好,良好,良好和过早)粪便菌群的差异。大坝乳杆菌科的舞蹈比出生时低于小猪。limosilactobacillus reuteri和氨基杆菌在大坝及其后代中主要表达。在初始暴露阶段,用乳杆菌科确定了17头仔猪(68%),在发育组之间不均匀地划分:85%的良好,37.5%的差,占早产猪的75%。开发组的良好是微生物多样性最高的,而开发小组的多样性最低。断奶后,小猪中乳杆菌科的丰度和多功能性减少,向大坝的微生物组转移。总而言之,尽管开发组和饲养环境,猪的粪便微生物群仍倾向于向类似的α和β多样性发展。
监测了2010年至2021年之间在捷克共和国的屠宰场屠宰牛,猪,绵羊和山羊的心脏损伤的发生率。在死后屠宰场检查中记录了被归类为急性,慢性和寄生虫的发现。与其他动物类别相比,在小猪(14.92%)和小牛(4.03%)中发现急性心脏损伤的最高发病率是最高的。发现慢性心脏损伤的发病率显着是小猪的最高(14.13%)。在肥大的动物中,慢性心脏损伤的患病率显着最高的猪猪(8.19%),其次是公牛(1.33%),羔羊(0.20%)和儿童(0.15%)。在成年动物中,慢性心脏损伤的发生率显着最高(7.10%),其次是母猪(5.21%),DIS(1.46%)和母羊(0.86%)。寄生发现很少见,在审查期间(母羊为0.2%,其他受监测的物种和类别的0.03%)。通常,发现的最高发病率是慢性损害,其次是急性损害,而寄生损伤的最低损害,除了绵羊,寄生发现的发生率高于急性发现的发生率。总的来说,发现心脏上最高的病理发现(29.06%),其次是小牛(10.87%),即淘汰了年轻。还发现了相对较高的牛(9.84%),饮食猪(8.43%)和母猪(5.80%)的发现。对于其他受监测的物种和类别,在不到3%的病例中发现了心脏病变。结果为屠宰动物的整体心脏健康和福利提供了见解。
量子计量学允许在最佳的海森堡极限下测量量子系统的性能。但是,当使用数字汉密尔顿模拟制备相关的量子状态时,应计算的错误错误将导致与此基本限制的偏差。在这项工作中,我们展示了如何通过使用标准多项式插值技术来减轻由于时间演化而引起的算法错误。我们的方法是推断到零小猪的步长大小,类似于用于减轻硬件错误的零噪声外推技术。我们对插值方法进行了严格的误差分析,用于估计特征值和随时间推动的期望值,并证明在误差中达到了heisenberg的限制,以达到多种类因素。我们的工作表明,仅使用Trotter和经典资源来实现许多相关算法任务,可以实现接近最先进模拟的精度。
上午9:30 AM根据猪在断奶前后的小猪中的粪便表型对细菌微生物组的表征。C. Vaggi* 1,2 , J. C. Vötterl 1,2 , F. Lerch 1,2 , F. Yosi 2,3 , S. Ricci 2,4 , D. Verhovsek 5 , and B. U. Metzler-Zebeli 1,2 , 1 Centre for Veterinary Systems Transformation and Sustainability, University of Veterinary Medicine Vienna , Vienna, Austria , 2 Christian Doppler Laboratory for Lab Innovative Gut牲畜的健康概念,兽医学院维也纳,维也纳,奥地利,奥地利3,动物科学系,农业学院,农业学院,斯里维亚亚大学,南苏门答腊,印度尼西亚南部苏门答腊,印度尼西亚南部苏门答腊,4个动物营养和福利中心,奥地利维也纳,维也纳,维也纳,维也纳,维也纳,维也纳大学,弗罗维也纳,维也纳,奥地利。
梭状芽胞杆菌艰难梭菌(以前是艰难梭菌)是抗生素 - 腹泻腹泻的常见原因,它会导致严重的死亡率和发病率以及医疗保健系统的高成本[1,2]。在千年开始时,PCR核糖型(RT)027在医疗保健环境中的传播将焦点放在c上。艰难梭菌感染(CDI)作为医生疾病[3]。近年来,已经观察到与社区相关的CDI发生率的升高[4]。C的流行病学研究最常见的方法。艰难梭菌,例如PCR核分型和多焦点序列分型(MLST),仅提供适度的分辨率,不足以进行爆发研究[5]。使用核心基因组MLST(CGMLST)或单核苷酸多态性(SNP)分析来分析由整个基因组测序(WGS)产生的数据[6],并且揭示了医疗保健系统中仅考虑CDI病例的一小部分的传播。这表明无症状的运输或环境源在C的传播中起着重要作用。艰难梭菌[7]。梭状芽胞杆菌艰难梭菌也可以由猪和其他牲畜携带[8],并已成为新生小猪搜查的原因[9]。使用WGS [10,11]中描述了活股和人之间的潜在传播,尤其是RT078被认为具有人畜共患潜力[12]。2011年,这与瑞典南部的一次基于医院的暴发有关[15]。簇,该RT是2009 - 2013年瑞典人类中最常孤立的RT之一[15]。在同一时间,这是瑞典中部多种繁殖农场的小猪中唯一发现的RT [16]。尚未为RT046建立人畜共患关系,并且克隆多样性,农场内随时间变化,或者目前已知与人类分离株的关系。这项研究的目的是检测瑞典养猪场和人类CDI病例之间RT046的传播,并使用WGS研究猪群中的RT046多样性。使用两个CGMLST方案和一项SNP分析进行了多个分析策略。
简介:猪轮状病毒疫苗是一种改良活病毒,含有 2 种改良活 G 血清型 5 和 4 血清型 A 轮状病毒,这些病毒经过改良后不会对幼猪、育肥猪或怀孕猪造成疾病。建议使用这种疫苗来预防幼猪轮状病毒性腹泻。轮状病毒是病毒性胃肠炎的一种病因,其特征是幼猪呕吐、水样腹泻、脱水和死亡;因此,其临床症状可能与 TGE 相同。这种疾病在哺乳猪和断奶猪中都很常见,到目前为止,所有接受检查的猪群都显示出该疾病的血清学证据。轮状病毒疫苗对怀孕母猪和幼猪均有疗效。对哺乳猪进行口服和肌肉注射疫苗接种可诱导主动免疫,并保护它们免受断奶后轮状病毒引起的腹泻。建议通过实验室确认小猪腹泻的原因,因为其他病毒、细菌和球虫病原体也可能导致类似的疾病症状。
摘要:空心微针旨在执行皮内医学物质的递送或液体提取,聚合物通过注射成型作为质量生产的成本效益材料。但是,现有研究缺乏对皮肤穿透测试的可加工性和性能的不同聚合物的比较分析。这项研究通过评估五种生物相容性热塑性材料制造的空心微对材料来解决这一差距:聚碳酸酯(PC),聚丁烯二苯甲酸酯(PBT),多酰胺酸(PLA),多酰胺12(PA12)和玻璃纤维增强型多酰胺多酰胺(PARAMANEMAMEMIMANE)(PARA)。在热塑性塑料中发现了复制保真度的显着差异,并且计算出更高的固化时间,从而导致由于填料阶段的扩展可变形性而产生了更好的复制保真度。PBT微针在脱再多造成的过程中变形,并被排除在穿透测试之外。在小猪耳朵上的穿透试验显示,由于针的变形,PA12和PLA微针的穿透性没有。para表现出一致的穿透结果,而PC表现出不一致的穿透行为,一些针的成功完全穿透了,而另一些针头变形。高机械性能对于实现一致和成功的穿透至关重要。
抽象的细胞外基质(ECM)蛋白在培养肌肉干细胞(MUSC)中起着至关重要的作用。但是,缺乏关于这些蛋白质中的每种如何影响MUSC与牲畜动物的扩散和分化的广泛研究。因此,我们研究了各种ECM涂层(胶原蛋白,纤连蛋白,明胶和层粘连蛋白)在猪MUSC的增殖,分化和成熟中的影响。从14天大的伯克希尔小猪中分离出来的猪猪肉,在ECM涂层的板上培养,经历了三天的增殖,然后进行了三天的分化。层粘连蛋白上的MUSC的增殖率高于其他粘连率(p <0.05)。在层粘连蛋白,胶原蛋白和纤连蛋白上,PAX7,MyF5和MYOD的mRNA表达水平没有显着差异(P> 0.05)。在分化期间,与其他ECMS相比,在层粘连蛋白上培养的MUSC表现出明显更高的分化速率(P <0.05)。同样,层粘连蛋白上的MUSC与成熟的肌肉纤维(例如MyH1和Myh4)相关的mRNA表达较高,分别与其他ECM涂层的MUSC相比,分别与肌肉纤维型IIX型IIX和肌肉纤维型IIB相关(P <0.05)。总而言之,我们对ECM的比较表明,层粘连蛋白显着增强了MUSC的增殖和分化,表现优于其他ECM。具体来说,在层粘连蛋白上培养的肌肉纤维表现出更成熟的表型。关键字细胞外基质,猪肌干细胞,层粘连蛋白,增殖,分化这些发现强调了层粘连蛋白在体外肌肉研究和培养肉类产生的潜力,突出了其在支持快速细胞增殖,更高的分化速率和成熟肌肉纤维的发展中的作用。