2.5g/日(白蛋白尿1700mg/日),肾功能正常(CrS1.1/Ur65mg/dL,肌酐清除率94mL/min)。根据血清和尿液免疫固定试验结果,诊断为IgG/κ单克隆丙种球蛋白病:M蛋白0.4g/dL,血清κ轻链11.8mg/L,血清λ轻链1.16mg/L,对应比值为10.15。血红蛋白12.4g/dL,钙9.0mg/dL。血清IgA、IgG、IgM均降低(分别为596、68、21mg/dL)。他的 C3 水平较低,为 74 mg/dL(正常范围:90-180 mg/dL),C4 水平正常(15 mg/dL)。未进行扩展补体检测。免疫研究中未检测到其他变化(抗 GBM、ANA、抗 dsDNA、ANCA 和冷球蛋白抗体阴性),病毒血清学
抽象背景T细胞在抗肿瘤反应中起着核心作用。然而,它们通常在肿瘤微环境中面临许多障碍,包括缺乏可用的必需代谢物,例如葡萄糖和氨基酸。此外,癌细胞可以通过上调代谢物转运蛋白并维持高代谢率来垄断这些资源,从而繁殖和增殖,从而胜过T细胞。方法中,我们试图通过增强其与肿瘤细胞竞争的糖酵解能力来提高肿瘤附近的T细胞抗肿瘤功能。为了实现这一目标,我们设计了人类T细胞,以表达一种关键的糖酵解酶,磷酸果糖激酶与葡萄糖转运蛋白3(一种葡萄糖转运蛋白)结合使用。我们将它们与肿瘤特异性的嵌合抗原或T细胞受体共表达。与对照细胞相比,的结果工程细胞表明,T细胞激活标记物的细胞因子分泌增加和T细胞激活标记的上调。 此外,它们显示出上糖溶解的能力,在人类肿瘤的异种移植模型中转化为改善的体内治疗潜力。 总结,这些发现支持实施T细胞代谢工程,以增强细胞免疫疗法对癌症的疗效。的结果工程细胞表明,T细胞激活标记物的细胞因子分泌增加和T细胞激活标记的上调。此外,它们显示出上糖溶解的能力,在人类肿瘤的异种移植模型中转化为改善的体内治疗潜力。总结,这些发现支持实施T细胞代谢工程,以增强细胞免疫疗法对癌症的疗效。
要应对对生态系统和全球经济的气候变化威胁,可持续的解决方案降低大气二氧化碳(CO 2)水平至关重要。现有CO 2捕获项目面临高成本和环境风险等挑战。本评论探讨了微藻(特别是小球藻)的杠杆作用,以捕获CO 2并转化为有价值的生物能源产品,例如生物氢化。引言部分概述了微藻细胞中的碳途径及其在CO 2捕获生物质生产中的作用。它讨论了当前的碳信贷行业和项目,重点介绍了有效的CO 2隔离的小球藻属的碳浓度机制(CCM)模型。因素受影响的微藻CO 2隔离,包括预处理,pH,温度,照射,营养,溶解的氧气以及CO 2的来源和浓度。该评论探讨了微藻作为各种生物能源应用的原料,例如生物柴油,生物油,生物乙醇,沼气和生物氢化。优化来自小球藻的生物氢产量的策略将突出显示。 概述了进一步优化的可能性,审查得出的结论是建议微藻和基于小球藻的CO 2捕获是有希望的,并为实现全球气候目标提供了贡献。优化来自小球藻的生物氢产量的策略将突出显示。概述了进一步优化的可能性,审查得出的结论是建议微藻和基于小球藻的CO 2捕获是有希望的,并为实现全球气候目标提供了贡献。
生物疗法涉及从活生物体或实验室产生的类似物中得出的物质,已将其治疗应用扩展到癌症和风湿病疾病之外,包括心血管疾病(CVD)。虽然其使用引起了人们对心力衰竭(HF)等不良心血管影响的担忧,但它在积极影响CVD方面也表现出了希望。值得注意的是,炎症与CVD之间的关系引起了阻断炎症细胞因子作为治疗方法的兴趣。动脉粥样硬化是一种关键的CVD病理学,涉及动脉壁中氧化脂质和炎性细胞的积累,导致斑块形成,并可能导致破裂,血栓形成和心肌梗死。缺血性心肌病,由心肌缺血和炎症引起,可以发展为HF。自身免疫性疾病种群以全身性炎症为特征,表现出CVD风险增加,这表明炎症是CVD发育的潜在促进者。评估风湿病人群中生物疗法的研究表明,心脏风险降低了结果,但是将这些发现概括为更广泛的人群需要进一步研究。
Glymphatic系统是神经退行性疾病中的新兴靶标。在这里,我们通过一种基于扩散的技术在遗传额颞痴呆症中研究了胶状系统的活性,该技术称为扩散张量张量图像沿血管周空间。我们研究了291名具有症状或症状性额颞痴呆的受试者(112染色体9开放式阅读框架72 [C9ORF72]扩张,119个带有颗粒蛋白[GRN]突变[GRN]突变,微管与微管相关的蛋白质Tau [mapt] tau [mapt]和83个非营业室(包括50岁的年轻人)(包括50岁的年轻人)(包括50岁)。我们通过计算侧心室侧心体平面的x-,y和z轴的扩散度来计算沿血管周空间指数的扩散张量图分析。临床阶段和基于血液的标记。 180名参与者的子集接受了认知随访,总共进行了640个评估。 沿血管周空间指数的扩散张量图分析在症状额额痴呆(估计的边际平均值±标准误差,1.21±0.02)中低于旧的非载波(1.29±0.03,p = 0.009),并且比较症状(1.30±0.009),并且症状突变携带者(1.30±0.01,p <0.001,p <0.001)。 In mutation carriers, lower diffusion tensor image analysis along the perivascular space was associated with worse disease severity ( β = − 1.16, P < 0.001), and a trend towards a significant association between lower diffusion tensor image ana lysis along the perivascular space and higher plasma neurofilament light chain was reported ( β = − 0.28, P = 0.063).临床阶段和基于血液的标记。180名参与者的子集接受了认知随访,总共进行了640个评估。沿血管周空间指数的扩散张量图分析在症状额额痴呆(估计的边际平均值±标准误差,1.21±0.02)中低于旧的非载波(1.29±0.03,p = 0.009),并且比较症状(1.30±0.009),并且症状突变携带者(1.30±0.01,p <0.001,p <0.001)。In mutation carriers, lower diffusion tensor image analysis along the perivascular space was associated with worse disease severity ( β = − 1.16, P < 0.001), and a trend towards a significant association between lower diffusion tensor image ana lysis along the perivascular space and higher plasma neurofilament light chain was reported ( β = − 0.28, P = 0.063).对LON gitudinal数据的分析表明,低扩散张量张量图分析沿基线处的血管周空间的患者比平均平均(P = 0.009)或高(P = 0.006)扩散张量张量图分析沿周围空间空间指数的患者要快。使用非侵入性成像方法作为Glymphatic System功能的代理,我们在遗传额颞痴呆的症状阶段表明了Glym phatic系统异常。类化学系统的这种度量可以阐明人类额颞痴呆中的病理生理过程,并促进遗传额额质痴呆的早期试验。
肾小球疾病进行分类,该分类学不反射异质的基本分子驱动因素。这不仅限制了诊断和治疗性患者管理,而且还会影响评估目标干预措施的临床试验。肾病综合征研究网络(Neptune)有望应对这些挑战。这项研究已招募了> 850例儿科和成年患者患有蛋白尿肾小球疾病,这些疾病促成了与长期结局有关的深层临床,组织学,遗传和分子蛋白。Neptune知识网络,包括组合,多结构数据集,在肾脏活检时捕获每个参与者的分子疾病过程。在本社论中,我们描述了Neptune Match的设计和实现,该匹配匹配了基础科学发现管道,并具有针对性的临床试验。无创生物标志物已开发用于实时途径分析。分子肾病学委员会审查了途径图与每位患者组装的临床,实验室和组织病理学数据一起编译了一份匹配报告,以估计在个别患者中鉴定出的特定分子疾病途径之间的拟合,并提出了临床试验。海王星匹配报告是使用已建立的方案向患者和参加肾脏科医生进行的,用于选择可用的临床试验。Neptune匹配代表了精密医学在肾脏病中的第一次应用,目的是开发靶向疗法并为每位患有原发性肾小球疾病的患者提供正确的药物。
补体系统是先天免疫的一部分,在保护身体免受病原体侵害和维持宿主体内平衡方面发挥着关键作用。补体系统的激活由多种途径触发,包括抗体沉积、甘露聚糖结合凝集素或活化补体沉积。C3 肾小球肾炎 (C3G) 是一种罕见的肾小球疾病,由补体失调引起,移植后复发率很高。其治疗主要基于免疫抑制疗法,特别是霉酚酸酯和糖皮质激素。近年来,在了解补体生物学及其在 C3G 病理生理学中的作用方面取得了重大进展。新的补体靶向治疗方法已经开发出来,初步试验显示出有希望的结果。然而,C3G 仍然存在挑战,移植后复发病例导致结果不理想。本综述讨论了 C3G 的病理生理学和管理,重点关注肾移植后的复发。
肾小球滤过依赖于肾小球基底膜的 IV 型胶原 (ColIV) 网络,即包含 ColIV 的 α 3、α 4 和 α 5 链的三螺旋分子。编码这些链的基因 (Col4a3、Col4a4 和 Col4a5) 的功能丧失突变与 Alport 综合征 (AS) 中观察到的肾功能丧失有关。对病理机制的细胞基础的准确理解仍然未知,并且目前尚无针对此疾病的特定疗法。在这里,我们生成了一个新等位基因,用于在小鼠的不同肾小球细胞类型中条件性删除 Col4a3。我们发现足细胞在发育中的肾小球基底膜中特异性地产生 α 3 链,并且其缺失足以损害 AS 中所见的肾小球滤过。接下来,我们表明,通过 TGF β 1 增强的水平基因转移以及使用同种异体骨髓间充质干细胞和诱导性多能干细胞,可以挽救 Col4a3 表达并恢复缺乏 Col4a3 的 AS 小鼠的肾功能。我们的概念验证研究支持水平基因转移(例如细胞融合)可以实现 Alport 综合征的细胞治疗。
每个肾脏包含约 150 万到 200 万个功能单位,称为肾单位,包括肾小球、小管和集合管等关键生理结构(图 1 A)。血液过滤发生在肾小球毛细血管中,这些血管极易受到多种损伤,包括遗传和环境因素、药物和病原体。由于肾小球缺乏内在再生能力,这种特殊组织结构的损伤通常与不良临床结果有关,并预示着进行性肾病和器官衰竭的初期阶段。慢性肾病 (CKD) 影响全球 10% 以上的人口 [1],并经常发展为终末期肾病 (ESRD)。据估计,70% 的 CKD 和 ESRD 患者出现肾小球损伤 [2]。对于许多 CKD 患者来说,唯一的
1肾脏 - 胰腺移植,迈阿密移植学院,迈阿密米勒大学迈阿密米勒大学医学院,佛罗里达州迈阿密,佛罗里达州迈阿密,2研究,迈阿密米尔勒大学医学院,佛罗里达州迈阿密米尔勒学院,伊斯兰教派和医学院Katz家族肾脏科学和高血压部,美国佛罗里迈阿密移植研究所,迈阿密米勒大学医学院,美国迈阿密,美国迈阿密4号,迈阿密米勒大学迈阿密米勒大学医学院迈阿密米勒大学医学院手术系4个移植病理学,美国佛罗里达州迈阿密大学医学院,美国迈阿密大学,迈阿密肾科,迈阿密近米,迈阿密近米,迈阿密级别,迈阿密级别,迈阿密近科,迈阿密米勒大学医学院迈阿密迈阿密大学医学院迈阿密大学迈阿密大学医学院迈阿密移植学院移植,美国迈阿密米勒大学医学院,佛罗里达州迈阿密大学医学系7卡兹肾脏科和高血压家族分部