摘要。本文介绍了有关生物地重聚病的结构元素 - 生物地面覆盖碳循环评估的植被。地面覆盖是森林生态系统的极其重要的组成部分。在森林树冠下生长的植物积极参与生产过程:通过吸收大气中的二氧化碳,它们会产生生物质,并为生命从循环中消除碳。在Voronezh地区的森林条件下,该文章对橡木和松树森林生态系统的生态生态系统的碳库存进行了评估。橡木中的地面植被的结构(Quercus Robur l。)和Pine(Pinus silvestris L.)森林表明非常具体。在地下生物量库存中,在不同种植园和条件下所有测试地点上的地面库存都超过了地面库存。松树种植园中苔藓的地面植被覆盖物沉积的碳量为2.35 t h -1,草为3.80 t ha -1。结果表明,在4月(32.24 t ha -1)观察到生物种植园中最大的生存地面碳库,而5月最小的碳库(13.15 t ha -1)。在地下生物量中发现了橡木种植园中最高的碳价值。最高的总碳库存是4月(25.1 t ha -1),5月(10.8 t ha -1)最低。
要应对对生态系统和全球经济的气候变化威胁,可持续的解决方案降低大气二氧化碳(CO 2)水平至关重要。现有CO 2捕获项目面临高成本和环境风险等挑战。本评论探讨了微藻(特别是小球藻)的杠杆作用,以捕获CO 2并转化为有价值的生物能源产品,例如生物氢化。引言部分概述了微藻细胞中的碳途径及其在CO 2捕获生物质生产中的作用。它讨论了当前的碳信贷行业和项目,重点介绍了有效的CO 2隔离的小球藻属的碳浓度机制(CCM)模型。因素受影响的微藻CO 2隔离,包括预处理,pH,温度,照射,营养,溶解的氧气以及CO 2的来源和浓度。该评论探讨了微藻作为各种生物能源应用的原料,例如生物柴油,生物油,生物乙醇,沼气和生物氢化。优化来自小球藻的生物氢产量的策略将突出显示。 概述了进一步优化的可能性,审查得出的结论是建议微藻和基于小球藻的CO 2捕获是有希望的,并为实现全球气候目标提供了贡献。优化来自小球藻的生物氢产量的策略将突出显示。概述了进一步优化的可能性,审查得出的结论是建议微藻和基于小球藻的CO 2捕获是有希望的,并为实现全球气候目标提供了贡献。
生物疗法涉及从活生物体或实验室产生的类似物中得出的物质,已将其治疗应用扩展到癌症和风湿病疾病之外,包括心血管疾病(CVD)。虽然其使用引起了人们对心力衰竭(HF)等不良心血管影响的担忧,但它在积极影响CVD方面也表现出了希望。值得注意的是,炎症与CVD之间的关系引起了阻断炎症细胞因子作为治疗方法的兴趣。动脉粥样硬化是一种关键的CVD病理学,涉及动脉壁中氧化脂质和炎性细胞的积累,导致斑块形成,并可能导致破裂,血栓形成和心肌梗死。缺血性心肌病,由心肌缺血和炎症引起,可以发展为HF。自身免疫性疾病种群以全身性炎症为特征,表现出CVD风险增加,这表明炎症是CVD发育的潜在促进者。评估风湿病人群中生物疗法的研究表明,心脏风险降低了结果,但是将这些发现概括为更广泛的人群需要进一步研究。
使用Agilent 5973N模型质量选择性检测器(美国圣克拉拉)进行分析。Restek RTX-5MS(30 m×0.25 mm I.D.×0.25μm)气相色谱毛细管柱用作sta tionary阶段(美国贝尔方特)。气相色谱级(超纯色)氦气。分别将注入端口,离子源,四极杆和传递线温度保持在280°C,230°C,150°C和280°C下。GC烤箱程序在50°C保持2分钟,然后在4°C/min下增加到280°C,并保持10分钟。总分析时间为70分钟。质量范围为50-550 m/z,在完整扫描模式下,扫描速率为每秒0.45扫描。使用70 eV电离能进行电子电离。使用质量猎人软件(Qualita Tive Analysis B.07.00)和NIST质谱库确定并确定化合物。
摘要。Chlorella sorokiniana 的代谢会受到各种培养条件的影响。如果使用定量紫外线照射,则有可能补偿性地增加类胡萝卜素的合成,从而防止氧化应激。菌株 211-8k 在各种光照条件下培养:对照样品接受荧光照射;样品 1 每天接受 15 分钟的定量定期紫外线照射和荧光照明;样品 2 在稳定阶段接受 30 分钟的紫外线照射。定期紫外线照射对 C. sorokiniana 的种群增长产生负面影响,这种影响仅在第九天才可检测到,并且生物量产量显著下降。单次 30 分钟的紫外线照射会导致风干生物量的产量略有下降,但随着种群的进一步增长可能会得到补偿。定期接受紫外线照射可刺激类胡萝卜素的合成,干生物量的产量平均比对照样品高出 30%。在稳定阶段,单次紫外线照射 30 分钟会导致叶绿素和类胡萝卜素的生物量含量下降。微藻的显微镜检查显示,紫外线照射会导致出现凋亡迹象的细胞形成。