为了回答这些大问题,我们已派出机器人任务去探索我们的太阳系和我们自己以外的行星系统。NASA 最近的飞行任务包括 2015 年新视野号飞越冥王星、黎明号任务探索矮行星谷神星和小行星灶神星,以及 MAVEN 正在进行的火星大气和气候调查。持续飞行的任务包括几个火星轨道器以及探索火星地质历史的好奇号和机遇号探测器。开普勒任务创造了有关围绕其他恒星运行的行星的宝贵数据,这些数据仍在被挖掘。其他国家已派出机器人任务前往月球、金星和火星,并正在计划这些任务。2016 年,NASA 的朱诺号任务将抵达木星,对木星进行研究
小行星和跨阶层任务和轨迹设计CiSlunarAstrynemics大气重新进入指导和控制态度动态,决心和控制态度传感器和有效载荷 - 传感器校准•动态系统的动态系统应用于空间空间地球轨道和行星的空间范围地球轨道和行星的智慧人工机器人的智能 轨道动态,扰动和稳定性轨道确定和估计轨道碎屑和空间环境Rendezvous,相对运动,接近性操作以及对接停靠空间组装,制造,制造和服务卫星和空间Stelliteand spacecececececrationsSpaceCraft worditationSpacecraft Guidancation (SSA)连接分析和碰撞回避轨迹 /任务 /操纵设计和优化低推力轨迹多体动力学和轨迹设计< / div>
弹道飞行任务的导航通常相对简单。除了走向暴力毁灭之外,这次任务还有许多非常规方面,给导航团队带来了有趣的挑战:部分任务的推进剂预算紧张,没有反作用轮,导致航天器噪音大,导航团队不得不严重依赖 Delta 差分单向测距测量来确定视线外的 delta-V,以及在新的推进控制模式下,任务最后 30 天的关键操作。光学导航是这次任务成功的关键因素,有助于确定航天器和目标星历表,从而实现精确的瞄准机动。在任务最后几周做出战略决策后,DART 可以轻松地撞击较大的小行星 Didymos,这增加了撞击其卫星 Dimorphos 的可能性。
2022 年,全球大部分地区开始摆脱 COVID-19 疫情。NASA 继续利用技术推动任务向前发展,从而迎来了天文之年,NASA 取得了一个又一个惊人的成功。信息技术 (IT) 及其背后的人员是 NASA 任务成功的重要组成部分。在首席信息官办公室 (OCIO),我们的工作是提供安全、可靠和不断发展的 IT 功能和服务。随着 NASA 在深空及其他领域的探索达到新的高度,OCIO 很自豪能够参与历史性任务。这些任务包括 Artemis I 的发射和溅落、NASA 詹姆斯·韦伯太空望远镜的开创性图像、创新的 LOFTID 技术演示,以及改变小行星轨迹的 DART 任务的巨大成功。
简介:近地物体(99942)Apophis将采用非常接近的地球方法,超过地球和月球之间的距离的10%,并且在地球的地球同步卫星环内。这样一个相对较大的物体的这种极度亲密的通过代表了研究潜在危险物体的独特机会。flyby数据将提供有关(99942)Apophis(一种所谓的“ S型”小行星(类似于LL软管陨石类别)(根据其可见到近膜的光谱)(类似于其他已知的近地球小型小节中的80%以上的80%))的新科学信息。数据将增强对(99942)Apophis的未来任务的预先计划,并提供制定未来行星防御策略所需的其他数据。
自 20 世纪 50 年代末以来,人类进入太空(本文定义为低地球轨道 (LEO) 及更远的太空),除极少数例外,仅限于训练有素的宇航员。展望未来,人们越来越期望技术能够使公众能够参观太空和在太空度假。随着现在所谓的数字现实 (DR) 或沉浸式临场感的功能不断增强,太空度假有两种方式:虚拟和物理。本文将讨论这两种方式(参考文献 1)。潜在的太空旅游体验包括空间站、卫星、行星和小行星等目的地。此外,实际上只有使用目前已知或预计的技术,才能围绕其他恒星的行星/卫星。本文讨论了技术需要解决/正在解决的太空旅游问题,以实现太空旅游、由此产生的太空旅游体验和开发商业深空。太空是黑暗、寒冷的,几乎是完美的真空,具有微重力、GEV、银河系空间辐射和难以想象的距离,固体物质是微量物质,但却提供了使人类生存所需的能量。太空通常被称为最后的边疆,而如上所述,一般的环境条件与人类在地球上进化时的环境条件大不相同。因此,需要大量技术才能使人类进入太空。事实上,即使是物理学似乎也在宇宙尺度上发生变化,包括暗物质/能量、量子理论和宇宙常数之间的巨大分歧,以及反物质发生了什么之谜等。人们对其他星球上的生命的兴趣和寻找也日益增加,这些星球可能是以硅或硫为基础的,而不是碳。总的来说,有很多东西需要学习。月球/火星/附近小行星以外的太阳系目的地需要大大增加旅行时间(数年到数十年)、成本、距离以及健康和安全技术。太空旅游问题和选择实现太空旅游必须解决的基本问题是安全性/可靠性和成本/价格。其中,第一个是最困难和最困难的
在我们宇宙的数十亿个星系中,有数万亿个恒星系统,每个星系都有自己的行星、卫星、小行星和彗星。我们的星球存在于外太空的一个口袋中,我们很容易忘记我们的星球只是浩瀚宇宙中的一个太阳系。我们才刚刚开始揭开和解答宇宙和我们存在的奥秘,还有很多我们还没有找到答案。哈勃望远镜是现代历史上最著名的望远镜之一,因为它在帮助我们开始想象和理解我们称之为家园的宇宙方面发挥了关键作用。然而,尽管它对天文学的发展做出了重要贡献,但它过时的技术已经开始阻碍我们回答关于宇宙越来越复杂的问题。为了解决这个问题,美国宇航局最近发射了詹姆斯·韦伯太空望远镜 (JWST),以美国宇航局第二任局长的名字命名,他被认为是
摘要 20 世纪 80 年代初,萨根和蒂普勒就费米悖论的解释展开了激烈的争论,但并未分出胜负。萨根根据哥白尼原理主张外星智能的存在,而蒂普勒则根据奥卡姆剃刀原理主张外星智能的不存在。蒂普勒的立场是对类似但更早的哈特宣言的扩展。然而,自我复制星际机器人探测器在蒂普勒论证中发挥的作用至关重要。任何具备技术能力的物种都会发展自我复制技术,作为以最少的投资探索太空和整个银河系的最经济手段。没有证据表明我们的太阳系包括小行星带内存在此类探测器,因此外星智能不存在。这是一个强有力且令人信服的论点。反驳的论据都很薄弱,包括萨根的社会学解释。我们提出一个哥白尼论点,即外星智能并不存在——人类如今正在开发自我复制技术。作为通用原位资源利用 (ISRU) 能力的一部分,我们正在开发利用外星资源(包括电动机和电子设备)3D 打印整个机器人机器的能力。我们拥有 3D 打印电动机,可以利用每个恒星系统中都应有的外星材料。从类似的材料中,我们找到了一种 3D 打印神经网络电路的方法。从我们的工业生态中,自我复制的机器和通用构造器都是可行的。我们详细描述了如何利用小行星资源制造出自我复制的星际飞船。我们描述了小行星材料处理的技术特征(预计在大多数恒星系统中都很常见),以及某些类型的粘土和其他碎屑材料的过量生产。自我复制技术正在开发中,而且即将问世——如果人类正在追求自我复制技术,那么根据哥白尼原理,其他任何精通技术的物种也会这样做。没有证据表明他们已经这样做了。
60. 见下文第二部分 B.1-3。 61. 《外层空间条约》,上文注 4,第 II 条。 62. 比较 John G. Wrench,《不占用,没问题:外层空间条约已为小行星采矿做好准备》,51 CASE W. R SRV. J. I NT'LL. 437, 447 (2019)(指出将不占用原则解释为全面禁止资源所有权是错误的);与 Zielinksi,上文注 7(解释允许开采和商业化太空资源的国家并不认为该活动是占用);以及 Ricky J. Lee,《外层空间条约第二条:禁止国家主权、私有财产权或两者》,11 A USTL。 I NT'L LJ 128,130,133(2004)(指出第二条的中文翻译只是禁止国家而不是私人实体占有月球和其他天体)。