完全培养基配置 DMEM培养基;15%胎牛血清;1% GlutaMAX-1谷氨酰胺;MEM NEAA非必需氨基酸;Sodium Pyruvate丙酮
摘 要 : 目的:本研究旨在明确枳椇果梗多糖( HDPs )对酒精暴露所致的小鼠神经行为异常的改善效果,并探究谷 氨酸代谢和紧密连接蛋白表达在其中的作用。方法:雄性 C57BL/6 小鼠按 114 μL/20 g 剂量连续酒精灌胃 14 d ,建 立酒精暴露模型,同时设置干预组进行 HDPs 干预( 114 μL/20 g 酒精 +100 mg/kg HDPs )。应用行为学实验(旷场 实验、高架十字迷宫实验)评估神经行为学变化,采用气相色谱法测定小鼠血液中乙醇浓度, γ -H2AX 荧光检测小 鼠脑海马组织 DNA 损伤,免疫组化分析检测小鼠脑组织中紧密连接蛋白 Claudin-1 和 ZO-1 的表达,并通过超高 效液相色谱 - 四级杆飞行时间质谱法( UPLC-Q-TOF-MS )代谢组学技术对小鼠脑组织代谢物进行分析。结果: HDPs 可有效降低酒精暴露小鼠血液乙醇浓度,由 4.69±0.29 g/L 降至 1.64±0.104 g/L ;改善酒精暴露所致的小鼠神 经行为异常,旷场实验中,与酒精组相比, HDPs 干预组总路程显着提升至 27340±3304 cm ( P <0.05 ),平均速度 显着提升至 67.4±13.4 cm/s ( P <0.05 ),不动时间缩短 29% ( P <0.05 );高架十字迷宫实验中,与酒精组相比, HDPs 干预组闭臂停留时间显着减少至 195.6±10.3 s ( P <0.05 ),开放臂进入次数显着增加 26% ( P <0.05 ));还 可降低酒精诱导的脑组织氧化应激与 DNA 损伤水平, ROS 、 MDA 分别降低 5.4% 、 29.5% ( P <0.05 ), T-AOC 提 高 10.9% ,上调脑海马组织中 Claudin-1 ( 2.2 倍)和 ZO-1 ( 0.1 倍)蛋白的表达;并调节脑组织谷氨酸代谢通路, 提高甘氨酸( 19.7% )、谷光甘肽( 25% )、琥珀酸( 22.6% )等代谢物水平。结论: HDPs 可有效改善酒精对小鼠 神经行为的影响,其机制或可能通过抗氧化、保护紧密连接蛋白和调节谷氨酸代谢通路发挥作用,研究结果可为 扩展枳椇资源在食品领域中的应用提供理论依据。
携带分子有效载荷的药物纳米颗粒 (NP) 用于诊断和医疗等医疗目的。目前,发现一种新的有效临床治疗应用候选药物的研究过程是一个耗时耗力的过程,因为 NP 的行为方式不确定,需要进行大量实验来研究用于临床的 NP 药物的特性。众所周知,计算机实验是研究生物和临床系统以及评估药物效率的有力工具,可以显著减少所需的体内实验次数。为此,在本研究中,我们提出了一种基于 NP 的药物的新型时空药代动力学-药效学 (PKPD) 模型。所提出的模型考虑了心血管系统中的血流以及药物流动过程中和目标部位发生的 PKPD 动态。我们利用 13 种不同的 NP 在小鼠身上进行五次体内实验,结果表明,与之前的模型相比,所提出的模型具有更好的保真度。
1) Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, JA 和 Charpentier, E. (2012): 适应性细菌免疫中的可编程双 RNA 引导 DNA 内切酶。Science, 337, 816– 821。2) Kim, S., Kim, D., Cho, SW, Kim, J. 和 Kim, JS (2014): 通过递送纯化的 Cas9 核糖核蛋白在人类细胞中进行高效 RNA 引导基因组编辑。Genome Res., 24, 1012–1019。 3) Quadros, RM、Miura, H.、Harms, DW、Akatsuka, H.、Sato, T.、Aida, T.、Redder, R.、Richardson, GP、Inagaki, Y.、Sakai, D.、Buckley, SM、Seshacharyulu, P.、Batra, SK、Behlke, MA、Zeiner, SA、Jacobi, AM、Izu, Y.、Thoreson, WB、Urness, LD、Mansour, SL、Ohtsuka, M. 和 Gurumurthy, CB (2017): Easi-CRISPR:一种使用长 ssDNA 供体和 CRISPR 核糖核蛋白一步生成携带条件和插入等位基因小鼠的稳健方法。Genome Biol.,18,1-15。 4) Chen, S.、Lee, B.、Lee, AYF、Modzelewski, AJ 和 He, L. (2016): 高效小鼠基因组编辑
中性粒细胞已与狼疮肾炎(LN)患者的引发和永久性的全身性红斑狼疮以及由此产生的肾脏损伤,部分原因是过度释放中性粒细胞丝氨酸蛋白酶(NSP)。NSP Zymogens在中性粒细胞成熟过程中通过二肽基肽酶1(DPP1)激活,并被成熟的嗜中性粒细胞释放,以响应炎性刺激。因此,衰减LN疾病进展的潜在策略将是抑制DPP1。我们测试了Brensocatib是一种高度选择性和可逆的DPP1抑制剂,是否可以减轻干扰素-alpha(IFN A)加速NZB/W F1小鼠模型中的LN进展。为了确认Brensocatib对这种小鼠菌株中NSP的药效作用,在幼稚的NZB/W F1小鼠中通过口服粘膜进行了7天和14天的剂量研究,每天两次。Brensocatib以2和20 mg/kg/day的速度在每天服用7天后的骨髓NSP活动显着降低。为了启动LN疾病进展,将小鼠注射了表达IFN的腺病毒。2周后,再施用3个brensocatib剂量(或车辆)6周。在整个为期8周的研究中,Brensocatib治疗(20 mg/kg/day)显着降低了与媒介物对照相比的严重蛋白尿的发生。brensocatib的治疗还需要显着降低尿白蛋白与促丁宁的比例,表明肾脏损伤的降低以及血液尿素氮水平的显着降低,表明肾功能提高了。还观察到了肾小球肾炎评分降低的趋势。基于肾脏组织病理学分析,Brensocatib治疗显着降低了肾小管蛋白评分和与媒介物组相比的肾小管蛋白评分和肾病评分。最后,brensocatib显着降低了LN小鼠肾脏在各种炎症细胞中的锻炼中。总而言之,这些结果表明,Brensocatib改变了LN小鼠的疾病进展,并有必要进一步评估LN中DPP1抑制作用。
1型糖尿病(T1D)是一种自身免疫性疾病,其发病率无法解释,其环境因素可能发挥作用。以前,我们表明,与含麸质标准标准(STD)饮食相比,在子宫内严格提供的无glu饮食(GF)饮食严格降低了非肥胖糖尿病(NOD)小鼠的自身免疫性糖尿病的发生率。目前的研究旨在阐明相同饮食干预的糖尿病掌测作用背后的可能机制。点头小鼠在怀孕期间接受了GF非曲霉素饮食或性病阿特氏蛋白饮食。两组的女性后代在一生中都喂了性病饮食,并记录了200天的糖尿病发病率。以13周龄的女性后代测量以下参数:胰岛素炎,葡萄糖和胰岛素耐受性和血浆胰岛素自身抗体滴度。饮食干预措施显示自身免疫性糖尿病发病率,胰岛素炎或胰岛素耐受性和血浆胰岛素自身抗体滴度没有降低。总而言之,这项研究无法复制春季小鼠NOD小鼠中无麸质饮食的前观察到的糖尿病减轻糖尿病,因此无法进一步阐明潜在的机制。
预测氨基酸取代引起的蛋白质热稳定性的变化对于了解人类疾病和工程有用的蛋白质对临床和工业应用至关重要。虽然蛋白质生成模型的最新进展是在以结构或进化序列环境为条件的氨基酸上学习概率分布的,但在没有任务特异性训练的情况下预测各种蛋白质特性方面表现出了令人印象深刻的性能,但其强大的无监督预测能力并未扩展到所有蛋白质功能。尤其是,它们改善蛋白质稳定性预测的潜力仍未得到探讨。在这项工作中,我们提出了一个新颖的深度学习框架,它可以适应和整合两个通用蛋白质生成模型 - 一种蛋白质语言模型(ESM)和一个反折叠模型(ProteinMPNN) - 有效的稳定性预测器。马刺采用轻量级的神经网络模块来将蛋白质MPNN学到的每个残留结构表示形式重新融合到ESM的注意层中,从而为ESM的序列表示学习提供了信息。这种重新布线策略使马刺能够从序列和结构数据中利用进化模式,在这种数据中,ESM所学的序列类似分布的条件是基于由蛋白质MPNN编码的结构先验,以预测突变效应。我们通过在最近发布的Mega规模的热稳定性数据集中进行监督的培训将该集成的框架引导到稳定预测模型。此外,它通过用作提高准确性的稳定性模型来增强当前的低N蛋白适应性预测模型。在12个基准数据集中进行的评估表明,马刺提供了准确,快速,可扩展和可推广的稳定性预测,并且始终超过了当前的最新方法。值得注意的是,马刺在蛋白稳定性和功能分析中表现出显着的多功能性:与蛋白质语言模型结合使用时,它以无监督的方式准确地识别蛋白质功能位点。这些结果突出显示了马刺是推动当前蛋白质稳定性预测和机器学习引导的蛋白质启动工作流程的强大工具。马刺的源代码可在https://github.com/luo-group/spurs上获得。