要获得癫痫发作的自由,癫痫手术需要完全切除癫痫脑组织。在术中电视学(ECOG)记录中,癫痫组织产生的高频振荡(HFO)可用于量身定制切除缘。但是,实时自动检测HFO仍然是一个开放的挑战。在这里,我们提出了一个尖峰神经网络(SNN),用于自动HFO检测,最适合神经形态硬件实现。我们使用独立标记的数据集(58分钟,16个记录),训练了SNN,以检测从术中ECOG测量的HFO信号。我们针对快速连锁频率范围(250-500 Hz)中HFO的检测,并将网络结果与标记的HFO数据进行了比较。我们赋予了SNN新型的伪影排斥机制,以抑制尖锐的瞬变并证明其在ECOG数据集中的有效性。该SNN检测到的HFO速率(中位数为6.6 HFO/ min)与数据集中发布的HFO率(Spearman'sρ= 0.81)相当。所有8例患者的术后癫痫发作结果被“预测”为100%(CI [63 100%])的精度。这些结果为建造实时便携式电池式HFO检测系统提供了进一步的一步,该检测系统可在癫痫手术期间使用,以指导癫痫发作区的切除。
大脑功能依赖于脉冲神经元回路,其中突触在融合传输与记忆存储和处理方面发挥着关键作用。电子技术在模拟神经元和突触方面取得了重要进展,而将大脑和受大脑启发的设备连接起来的脑机接口概念也开始实现。我们报告了大脑和硅脉冲神经元之间的忆阻连接,这些连接模拟了真实突触的传输和可塑性。与金属薄膜氧化钛微电极配对的忆阻器将硅神经元连接到大鼠海马的神经元。忆阻可塑性解释了连接强度的调节,而传输则由通过薄膜氧化物的加权刺激介导,从而产生类似于兴奋性突触后电位的反应。反向大脑到硅的连接是通过微电极-忆阻器对建立的。在此基础上,我们展示了一个三神经元脑硅网络,其中忆阻突触经历由神经元放电率驱动的长期增强或抑制。
显示出极为尖锐的石墨烯切片在表面上排成一列的插图,对健康细胞进行了消毒而不会损坏它们。 Chalmers Technology开发的杀菌石墨烯表面可能在不久的将来可在医疗设备中使用。 Yen Sandqvist提供的插图
摘要 - 尽管未来电网的数字化提供了几种协调激励措施,信息和通信技术(ICT)的可靠性和安全性却阻碍了其整体绩效。在本文中,我们通过统一的功率和信息来介绍一种新颖的插座尖峰谈话,作为使用SPIKES协调对微电网控制的数据归一化的手段。这种网格边缘技术允许每个分布式能源资源(DER)通过使用沿着领带线的功率流相互交互来独立执行二级控制理念。受到计算神经科学领域的启发,Spike Talk基本上基于我们大脑中的信息传递理论的细粒平行性,尤其是当神经元(建模为DERS)通过突触(模型为Tie Line)传输信息(从每个DER上测量的功率流)发射信息(从每个DER测量)。Spike Talk不仅可以简化并通过驳回ICT层来解决网络物理建筑操作的当前瓶颈,而且还提供了基础设施,计算和建模的内在运营和成本效益的机会。因此,本文提供了关键概念和设计理论的教学插图。由于我们专注于本文中的微电网的协调控制,因此研究了一些负责将相关局部测量值转换为尖峰的神经编码方案的信号准确性和系统性能。
鉴于数据量的越来越多,有一个显着的研究重点是硬件,可提供低功耗的高计算性能。值得注意的是,神经形态计算,尤其是在利用基于CMO的硬件时,已经表现出了有希望的研究成果。此外,越来越强调新兴突触设备(例如非挥发性记忆(NVM)),目的是实现增强的能量和面积效率。在这种情况下,我们设计了一个硬件系统,该硬件系统采用了1T1R突触的一种新兴突触。Memristor的操作特性取决于其与晶体管的配置,特别是它是位于晶体管的源(MOS)还是排水口(MOS)。尽管其重要性,但基于Memristor的操作电压的1T1R配置的确定仍然不足以在现有研究中探索。为了实现无缝阵列的扩展,至关重要的是要确保单位单元格适当设计以从初始阶段可靠地操作。因此,对这种关系进行了详细研究,并提出了相应的设计规则。香料模型。使用此模型,确定最佳晶体管选择并随后通过仿真验证。为了证明神经形态计算的学习能力,实现了SNN推理加速器。此实现利用了一个基于在此过程中开发的验证的1T1R模型构建的1T1R数组。使用降低的MNIST数据集评估了精度。结果证明了受大脑功能启发的神经网络操作成功地在高精度而没有错误的硬件中实现。此外,在DNN研究中通常使用的传统ADC和DAC被DPI和LIF神经元取代,从而实现了更紧凑的设计。通过利用DPI电路的低通滤波器效应来进一步稳定该设计,从而有效地降低了噪声。
微型和纳米结构的表面受到了广泛的关注,因为它们在传感器技术,表面摩擦学以及依从性和能量收集等广泛应用中的潜力。已经研究了几种修改材料表面,例如血浆处理,离子梁溅射,反应性离子蚀刻和激光处理等材料表面[1-3]。在这些方法中,由于其良好的空间分辨率和对不同材料(例如金属,半导体,介电和聚合物)的良好空间分辨率和高可重现性,激光表面处理近年来引起了人们的兴趣[4-6]。从连续波(CW)到超短梁以及从UV到IR的工作波长已经使用了许多类型的激光源[7-8]。由于激光 - 物质相互作用,从纳米到微尺度的各种结构和模式取决于激光参数和材料特性,例如激光诱导的周期性表面结构(LIPS),2D圆形液滴和特定的微型结构,称为Spikes [9-14]。
人类大脑利用尖峰进行信息传输,并动态地重组其网络结构,以提高能源效率和认知能力的整个生命周期。从这种基于尖峰的计算中汲取灵感,已开发出尖峰神经网络(SNN)来构建模仿该效率的事件驱动的模型。尽管有这些进步,但在训练和推断期间,深SNN仍遭受过度参数化,与大脑自我组织的能力形成鲜明对比。此外,由于静态修剪比率保持最佳的修剪水平,现有的稀疏SNN受到挑战,导致下降或过度修剪。在本文中,我们为深SNN提出了一种新型的两阶段动态结构学习方法,旨在从头开始进行有效的稀疏训练,同时优化压缩效率。第一阶段使用PQ索引评估了SNN中现有稀疏子网络的可压缩性,这促进了基于数据压缩见解的突触连接的重新线的自适应确定。在第二阶段,这种重新布线的比率严格告知动态突触连接过程,包括修剪和再生。这种方法显着改善了对深SNN中稀疏结构训练的探索,从压缩效率的角度来动态地调整稀疏性。我们的实验表明,这种稀疏的训练方法不仅与当前的深SNNS模型的性能保持一致,而且还显着提高了压缩稀疏SNN的效率。至关重要的是,它保留了使用稀疏模型启动培训的优势,并为将AI授予神经形态硬件的边缘提供了有前途的解决方案。
Hubert Blain,Edouard Tuaillon,Lucie Gamon,Amandine Pisoni,StéphanieMiot等。在2 BNT162B2疫苗剂量和高抗体反应后,SARS-COV-2尖峰抗体的强衰减很大。美国医疗董事协会期刊,2022,23(5),pp.750-753。10.1016/j.jamda.2022.02.006。hal-03760314
摘要 - 我们描述了一种计算体系结构,能够使用配备有M2处理器的普通Apple MacBook Air模拟数十亿个尖峰神经元的网络,24 GB的芯片统一内存和4TB固态磁盘。我们使用基于事件的传播方法,该方法在每个处理周期中处理系统中M神经元的N尖峰数据包。每个神经元具有C二进制输入连接,其中C可以为128或更多。在传播阶段,我们将激活的N神经元的所有靶标的激活值增加。在第二步中,我们使用激活值的直方图来确定即时的触发阈值,并选择将在下一个数据包中发射的N神经元。我们注意到,这种主动选择过程可能与大脑中的振荡活动有关,这可能具有固定在每个周期上发射的神经元百分比的功能。至关重要的是,绝对没有对体系结构的限制,因为每个神经元都可以直接与其他神经元建立联系,从而使我们可以具有前馈和反复的连接。具有M = 2 32个神经元的,这允许2 64个可能的连接,尽管实际连接性极为稀疏。 即使使用现成的硬件,模拟器也可以连续传播包数据包,每秒数千次连接数十次。 值得注意的是,所有这些都可以使用仅37瓦的能源预算,接近人脑所需的能量。 索引术语 - 启用神经网络,大脑尺度模拟,二进制重量,稀疏网络,GPU加速度,Apple M2芯片,生物成分网络,这允许2 64个可能的连接,尽管实际连接性极为稀疏。即使使用现成的硬件,模拟器也可以连续传播包数据包,每秒数千次连接数十次。值得注意的是,所有这些都可以使用仅37瓦的能源预算,接近人脑所需的能量。索引术语 - 启用神经网络,大脑尺度模拟,二进制重量,稀疏网络,GPU加速度,Apple M2芯片,生物成分网络这项工作表明使用当前的硬件可以进行大脑尺度模拟,但这需要重新思考如何实施模拟。
摘要阿尔茨海默氏病(AD)影响了全球超过5500万人,但关键的遗传贡献者仍然没有尚未确定。利用基因组元素模型的最新进展,我们提出了创新的反向基因发现技术,这是一种神经网络结构中一种突破性的神经元到基因的回溯方法,以阐明新型的因果关系遗传生物标志物推动了AD套装。逆向基因 - 包括三个关键创新。首先,我们利用这样的观察结果,即引起AD的概率最高的基因(定义为最有因果基因(MCG))必须具有激活那些引起AD的最高可能性的神经元的最高可能性,该神经元被引起AD的可能性最高,被罚款为最大的神经元(MCNS)。其次,我们在输入层处取代基因令牌表示,以允许每个基因(已知或新颖的AD)表示为输入空间中的疾病和独特的实体。最后,与现有的神经网络体系结构相反,该架构以馈送方式跟踪从输入层到输出层的神经激活,我们开发了一种创新的回溯方法,可以跟踪从MCNS到输入层的向后进行识别,从而识别最引起的代币(MCTS)和Corre-McGs。逆向基因 - 高度解释性,可推广和适应性,为在其他疾病情景中应用提供了有希望的方法。