(a)半细胞中Xno-Anode材料的第一个形式周期,表明可逆能力为215 mahg -1和98.5%的第一周期效率。(b)半细胞中XNO-ANODE材料的脱二率测试,在10 C时表明能力保留率为95%(vs 0.5 c),在20 C时表明70%。在硬币细胞中进行了测试,电极复合负载为1.4 mAhcm -2。(c)半细胞中LNMO-CATHODE材料的第一型循环,表明137 MAHG -1的可逆能力和95%的第一周期效率。(d)半细胞中的LNMO-cathode材料的晶状率测试,显示在10C时的容量保留率(vs 0.5C)。在25°C的硬币细胞中进行了测试,电极复合负荷为1.1 MAHCM -2。1。[高压LI 1.0 Ni 0.5 Mn 1.5 O 4的表征以及尖晶石,晶格大小和4 V容量中的Ni含量之间的对应关系。https://www.topsoe.com/industries/batteries]。https://www.topsoe.com/industries/batteries]。
研究资格- HDR,材料化学,上阿尔萨斯大学 用于储能和环境的新型碳混合材料的开发 用于气体传感器的金属氧化物半导体薄膜的合成和表征 硕士,可再生能源系统,特兰西瓦尼亚大学,罗马尼亚 三氧化钨的静电喷雾沉积(代尔夫特理工大学,荷兰) 学士,物理学和化学,特兰西瓦尼亚大学,罗马尼亚 从-锂锰氧化物尖晶石中提取锂(苏格拉底-伊拉斯谟奖学金) 研究生涯 2011 年 10 月 - 至今:CNRS 研究员,IS2M,法国米卢斯 用于储能/环境应用的碳混合材料的设计 2008 年 6 月 - 2011 年 9 月:博士后奖学金,IS2M,法国米卢斯 用于锂离子超级电容器的活性炭和石墨电极(ANR HipasCap) 碳刷以及汽车燃油泵收集器(工业项目,Carbone Lorraine) 2018 年:RS2E 科学委员会成员 2017 年:IS2M (UMR 7361 CNRS-UHA) 实验室委员会当选成员 2017 年:《碳研究杂志,C》编委,MDPI 2016 年:IS2M (UMR 7361, CNRS-UHA) 科学委员会成员 奖项
阴离子交换膜燃料电池 (AEMFC) 是质子交换膜燃料电池 (PEMFC) 的一种经济高效的替代品。高性能耐用的 AEMFC 的开发需要高导电性和坚固的阴离子交换膜 (AEM)。然而,AEM 通常在导电性和尺寸稳定性之间表现出权衡。本文报道了一种氟化策略,用于在聚(芳基哌啶)AEM 中创建相分离的形态结构。高度疏水的全氟烷基侧链增强了相分离,从而构建了用于阴离子传输的互连亲水通道。因此,这些氟化 PAP (FPAP) AEM 同时具有高电导率(80°C 时 > 150 mS cm − 1)和高尺寸稳定性(80°C 时溶胀率 < 20%)、优异的机械性能(拉伸强度 > 80 MPa 和断裂伸长率 > 40%)和化学稳定性(80°C 时在 3 m KOH 中 > 2000 小时)。使用本 FPAP AEM 的具有非贵重 Co-Mn 尖晶石阴极的 AEMFC 实现了 1.31 W cm − 2 的出色峰值功率密度。在 0.2 A cm − 2 的恒定电流密度下,AEM 在燃料电池运行 500 小时后保持稳定。
摘要:采用放电等离子烧结技术制备了不同成分的AlN-MgO复合材料,系统研究了成分对其微观结构、热性能和力学性能的影响。AlN-MgO复合材料中MgO的成分控制在20~80wt%。结果表明,烧结过程中未发生相变,MgO和AlN晶格内形成了不同的固溶体。AlN-MgO复合材料的晶粒结构比烧结的纯AlN和MgO样品更细。透射电子显微镜分析表明,复合材料中既存在富氧、低密度的晶界,也存在含有尖晶石相的干净边界。 100 o C时烧结的纯AlN样品表现出最高的热导率(53.2 W/mK)和最低的热膨胀系数(4.47×10 -6 /K);而烧结的纯MgO样品表现出中等的热导率(39.7 W/mK)和较高的热膨胀系数(13.05×10 -6 /K)。但随着AlN-MgO复合材料中MgO含量的增加,AlN-MgO复合材料的热导率从33.3降低到14.9 W/mK,而热膨胀系数普遍增加,随着MgO含量的增加从6.49×10 -6增加到10.73×10 -6 /K。MgO含量为60 wt%的复合材料整体表现出最好的力学性能。因此,AlN-MgO复合材料的成分和微观结构对其热性能和力学性能具有决定性的影响。
2023 年,在 FRPS 下,获得 BMSCE 颁发的 2,00,000 卢比(仅二十万)资助,用于“使用尖晶石铁氧体作为吸附剂去除废水中的重金属”项目 2021 年,获得 TEQIP – III 项目提案资助,用于利用固体废物生物医学焚烧灰生产砖块 2019 年,获得钢铁部颁发的项目提案资助,用于印度 KIOCL 公司开展的“建筑业使用粉煤灰和底灰作为前体生产土聚物骨料的研究”。 2015 年,因项目提案“土工聚合物作为下一代土壤稳定剂”获得学生项目计划 (SPP) 资助,项目提案由印度班加罗尔卡纳塔克邦科学技术委员会 (KSCST)、IISc 提供 2014 年,因开展教师发展计划 (FDP)“腐蚀对混凝土基础设施及其耐久性的影响”获得 VTU-VGST 提供的 200,000 卢比 (20 万卢比) 资助 2014 年,因项目提案“用于制造粉煤灰骨料的托盘化技术”获得学生项目计划 (SPP) 资助,项目提案由印度班加罗尔卡纳塔克邦科学技术委员会 (KSCST)、IISc 提供
摘要:带有尖晶石LI 4 Ti 5 O 12(LTO)电极的锂离子固态电池具有显着的优势,例如稳定性,长寿和良好的乘法性能。在这项工作中,通过大气等离子体喷涂方法获得LTO电极,并通过在LTO电极上的原位紫外线(UV)固化制备复合固体电解质。使用柔软的组合策略设计了复合固体电解质,并将电解质制备成聚(乙烯基氟化物-CO-HEXAFRUOROPYLENE)(PVDF-HFP)的复合材料(PVDF-HFP)柔性结构和高导不导率Li 1.3 Al 0.3 Al 0.3 Ti 1.7(PO 4)(PO 4)3(LATP)硬颗粒。复合电解质在30℃下表现出高达0.35 ms cm -1的良好离子电导率,而在4.0 V上方的电化学窗口显示出。原位和原位电解质被组装到LTO // Electrolete // Li Solid-State电池中,以研究其对电池电化学性能的影响。结果,组装的Li 4 Ti 5 O 12 //原位电解质// Li电池的性能速度很高,其容量保留率为90%,在300个周期后,在0.2 mA/cm 2时为0.2 mA/cm 2。这项工作为制造新型高级固态电解质和电极的新方法提供了一种新方法,用于应用固态电池。
阿科玛与 Morrow 签署了谅解备忘录,旨在共同开发、筛选和测试用于下一代高压电池的新型电解液配方。基于阿科玛专有的超纯锂电解液盐和 Morrow 基于无钴高压尖晶石 (LNMO) 的大尺寸电池,此次合作将加速新一代电池的开发。Morrow Batteries 的目标是成为世界上第一家将 LNMO 技术作为活性阴极材料商业化的电池公司。得益于其特殊的化学性质,与性能相似的电池相比,LNMO 的成本和碳足迹将显著降低。此外,对在阴极和阳极端子之间输送带正电离子的电解液的优化将能够显著提高新一代电池的性能和竞争力。“我们很高兴能与 Morrow Batteries 合作,它是欧洲电池制造领域最具创新性和雄心勃勃的扩张公司之一。 “我们的合作为其基于 LNMO 的尖端电池技术的商业化铺平了道路,我们很高兴阿科玛能够参与其中”,阿科玛首席技术官 Armand Ajdari 表示。阿科玛最近在法国里昂的 Pierre-Bénite 研究中心开设了专门用于电池的卓越中心,并正在加快在该领域的投资。阿科玛利用世界一流的工业流程专业知识,开发出高纯度 Foranext® 锂盐,有助于显著提高电池的功率、稳定性和寿命。
在这项研究中研究了过渡金属对铁素(铁(III)氧化物)化合物的影响。铁氧体样品。X射线分析在三价状态下揭示了Fe期的存在,展示了一个基于(311)反射平面的首选方向的单杆立方尖晶石框架。对于CDFE 3 O 4,Znfe 3 O 4的晶体尺寸,使用Scherer方程的COFE 3 O 4分别得出10.54 nm,18.76 nm和32.63 nm的值。锌铁酸盐与钴和铁氧体相比表现出中间光子性质,镉铁素体的光损失高光损失,钴铁液表现出最小的光学损失。EDX分析证实了Zn 2 +,CO 2 +,Fe 3 +,Cd 2 +和O 2-离子的存在,以支持预期的stoichio-量组成。光学评估表明,COFE 3 O 4纳米颗粒非常适合光电设备,紫外检测器和红外(IR)检测器。与其他样品相比,钴铁素体的VSM测量值比其他样品表现出更高的牢固性和磁饱和度。光致发光(PL)光谱显示出多种颜色,包括青色,绿色和黄色,在铁素体样品的不同波长下。这些发现表明合成样品是由于其可靠的磁性特性而用于高频设备的合适材料。镉铁氧体显示出多磁性结构域的结构,与在锌和钴铁岩中观察到的单磁体结构结构形成对比。
氧化铁纳米颗粒(IONP)已被鉴定为有前途的化合物类别,可以增强由于其超磁特性而导致的MRI(磁共振成像)扫描中的对比度。这项研究评估了在兔模型中,将右旋糖液涂层的IONP作为MRI的T2对比剂的功效。ionps,然后用葡萄糖层覆盖。使用TEM(透射电子显微镜),振动样品磁力测定法(VSM)和XRD(X射线衍射)等技术进行了表征。新西兰白兔子(n = 6)用于体内MRI研究。ionp(10 mg fe/kg),在IONP给药后,在基线和各个间隔(1、4和24 h)处进行MRI扫描(T1-和T2加权)。信号强度变化和对比度增强在肝脏,脾脏和肾脏中进行了分析。IONP的平均尺寸为15±3 nm,这是一个反尖晶石晶体结构,并显示出磁性特性,指示超帕磁性含量为65±5 EMU/g饱和磁化。MRI扫描显示IONP给药后肝脏,脾脏和肾脏的显着信号强度变化和对比度增强。在注射后4小时观察到最大对比度增强,肝脏中T2信号强度降低了60±8%,脾脏降低了45±7%。对比度增强在肝脏和脾脏中持续24小时,而肾脏显示纳米颗粒的对比度增强和快速清除率较低。总而言之,右旋脱氧的离子体在兔子的MRI中表现出有效的T2对比度增强,尤其是在肝脏和脾脏中。这些器官中纳米颗粒的长时间保留使其适合长期成像研究。但是,肾脏的快速清除可能会限制其在肾脏成像中的应用。
使用 Mn3O4 八面体制备的 Si 掺杂 LiMn2O4 正极材料增强的 LiBs 电化学性能 朱甘 1、秦明泽 1、吴婷婷*、赵孟远、沈燕生、周宇、苏悦、刘云航、郭美梅、李永峰、赵洪远 * 河南科技学院机电工程学院先进材料与电化学技术研究中心,新乡 453003,中国 * 电子邮件:wtingtingwu@163.com (T. Wu),hongyuanzhao@126.com (H. Zhao) 收到:2022 年 3 月 8 日/接受:2022 年 3 月 28 日/发表:2022 年 4 月 5 日 我们提出了一种 Si 掺杂和八面体形貌的共同改性策略来提高 LiMn2O4 的电化学性能。以Mn3O4八面体为锰前驱体,SiO2纳米粒子为硅掺杂剂,采用高温固相法制备了Si掺杂的LiMn2O4样品(LiSi0.05Mn1.95O4八面体)。XRD和SEM表征结果表明,Si4+离子的引入对LiMn2O4固有的尖晶石结构没有产生实质性影响,LiSi0.05Mn1.95O4八面体呈现出相对均匀的粒径分布。在1.0C循环下,LiSi0.05Mn1.95O4八面体比未掺杂的LiMn2O4表现出更高的初始可逆容量。经过 100 次循环后,LiSi 0.05 Mn 1.95 O 4 八面体表现出更好的循环稳定性,容量保持率高达 94.7%。此外,LiSi 0.05 Mn 1.95 O 4 八面体表现出良好的倍率性能和高温循环性能。如此好的电化学性能与 Si 掺杂和八面体形貌的协同改性有很大关系。关键词:LiMn 2 O 4 ;硅掺杂;八面体形貌;Mn 3 O 4 八面体;电化学性能 1. 引言