时代技术 • 培训(TTP Shift、DAFCS TNG) 尘埃着陆事故减少 80% • MMR(增加 S/A、全天候) • 红外对抗措施(改进的紫外线光谱,可见度更低) • 通信(附加 ARC-231) • CAS 协调(FAC-A TNG、WTI、照明) • 飞行中燃料(DAFCS) • 尘埃着陆训练(充分利用 DAFCS、航路和终端) • 导航仪(2-GPS、EGI、INU) • CAAS(任务处理器)罗克韦尔柯林斯(集成) • 船上操作(DAFCS) • RF 保护(SIRFC、BFT 2009 结果)2011、2012、2013 • 海王星猎鹰(内利斯)
1. 所有恒星(包括太阳)都是由星云(由尘埃和气体组成)形成的 2. 引力使尘埃和气体盘旋在一起,形成原恒星 3. 引力能转化为热能,因此温度升高。当温度足够高时,氢原子核发生核聚变形成氦原子核,并放出大量的热和光。一颗恒星诞生了。 4. 最终氢开始耗尽。较重的元素由氦的核聚变制成。恒星从主序变成红巨星(如果是一颗小恒星)或红超巨星(如果是一颗大恒星)。表面温度下降,相对光度降低。
天体物理环境中发生的化学反应主要受碳氧 (C/O) 比控制。这是因为一氧化碳 (CO) 键能高达 11.2 eV,使 CO 成为已知的最稳定的双原子分子 ( Luo, 2007 )。这种经典的二分法受到了挑战,因为光化学和脉动激波等非平衡过程会破坏强 CO 键并导致意想不到的分子的形成 ( Agúndez et al., 2010; Gobrecht et al., 2016 )。难熔分子和分子团簇是恒星尘埃的前身,具有特别的天文学意义。碳主导区域中的主要尘埃种类之一是碳化硅 (SiC)。在富碳演化恒星中,通常会观察到约 11.3 微米的宽光谱特征,这归因于 SiC 尘埃颗粒的存在( Friedemann,1968; Hackwell,1972; Treffers and Cohen,1974)。 SiC 星尘是从原始陨石中提取的( Bernatowicz et al.,1987; Amari et al.,1994; Hoppe et al.,1996; Zinner et al.,2007; Liu et al.,2014)。最近的研究表明,在原始陨石星尘中发现的绝大多数太阳前 SiC 颗粒源自低质量渐近巨星支 (AGB) 恒星( Cristallo et al.,2020)。但是在富碳演化恒星的恒星包层中也检测到了 SiC、Si 2 C、SiC 2 等分子气相物质( Thaddeus 等人,1984;Cernicharo 等人,1989;McCarthy 等人,2015;Massalkhi 等人,2018)。气相硅碳分子和固态 SiC 尘埃的证据表明,它们的中间体(即 SiC 分子团簇)也存在于富碳天文环境中,并参与成核和 SiC 尘埃形成过程。因此,SiC 分子团簇是我们感兴趣的对象。这项研究是先前工作的延续(Gobrecht 等人,2017),并讨论了先前研究的中性(SiC)n(n = 1–12)团簇的(单个)电离能。本文的结构如下。在第 2 节中,我们介绍了用于推导垂直和绝热电离能的方法。第 3 节展示了这些能量的结果以及绝热优化的阳离子几何形状,第 4 节给出了我们的总结和结论。
尘埃晶粒,通过与电子,离子和电场的相互作用获得的电荷促进了集体行为。对于许多应用,从纳米颗粒的产生[1,2]到污染控制[3,4],充电的尘埃颗粒最终使活跃的等离子体环境留下了随后的处理。因此,带电的灰尘晶粒经历了从活性等离子体区域的过渡,通过富含离子的等离子体余泽,并带有净正空气电荷,进入含有中性气体和长期自由基的平衡环境。早期观察[5-7]在低压下腐烂的等离子体中的尘埃[5-7]触发了对时间和空间余气等离子体中灰尘(DE)的调查[8-18]。相比之下,与低压的尘土飞扬的等离子体余滴相比,纳米颗粒与大气压力余潮等离子的相互作用构成了相对未开发的领域。Nevertheless, the synthesis of nanocrystals at atmospheric pressure provides a low cost method to produce and deposit nanoparticles [ 19 – 22 ] with a speci fi c structure [ 23 , 24 ] and optical properties [ 25 , 26 ], while the deposition of thin fi lms using atmospheric pressure plasmas represents a cost effective alternative to vacuum processes [ 27 – 30 ] and provides the potential to include nanoparticles [ 20 ].随着这些
尘埃辐射可能会产生各种影响,从重大健康问题到环境问题。它可以含有引起疾病的微生物和有毒的重金属,因此,在特定部位建立微生物和矿物质的成分至关重要。在这项研究中,使用美国测试和材料标准方法学会(ASTM D1739)从阿兰迪斯(Namibia)的一个小镇Arandis(Namibia)Arandis收集了灰尘辐射样品,以收集和分析灰尘辐射(可安置的颗粒物质)。通过培养和隔离技术和文化特征进行了当前可行细菌的鉴定,并使用立体显微镜和X射线荧光重新确定灰尘辐射的元素组成。结果表明,尘埃尘埃中最主的细菌是芽孢杆菌物种。形态学表征表明,当前的颗粒是黑色,褐色,绿色和晶体颗粒,具有不规则,立方体,羊群和片状形状。元素研究表明,灰尘的辐射含有Hg,AS,Fe,Ni,Cr,Mn,Mn,Al和Pb发生在不同的浓度以及粉尘降低的污染状态,范围从低到严重到严重的污染因子,污染因子,污染负荷指数和富含污染的污染因子和富含污染因子和富含的重金属范围。
2019年7月26日,英联邦政府宣布建立一个国家尘埃疾病工作队(工作组)。工作组的作用是为澳大利亚尘埃疾病的预防,早期识别,控制和管理告知国家方法(5)。工作组将其审查重点放在加速的硅化和工程石上,但认识到在各种职业粉尘疾病中需要更广泛的行动。工作组的最终报告于2021年6月交给卫生和老年护理部长,认识到澳大利亚安全工作及其成员的最新进展,包括英联邦,州和领地政府,雇主的代表和工人代表。注意到,现有的监管框架没有有效保护工人,并且迫切需要改革(6)。
你是否曾在一个慵懒的夏日午后坐下来仰望天空?你可能注意到了不同形状的云朵,或者感受到了阳光照在脸上的温暖,或者偶尔有风吹过,让你的皮肤凉爽。所有这些现象都是高度有序的事件序列的一部分,有特定的原因。这些事件及其引发的因素都是气象学的一部分。气象学是研究大气现象的学科。气象学一词的词根“流星”是现代人对坠落太空的燃烧岩石的称呼。但流星在古希腊语中的意思是“高空”,而这个意思正是与气象学有关的。云、雨滴、雪花、雾、尘埃和彩虹都是大气“流星”的类型。主要类型是云滴和任何阶段都含有水的降水形式;它们被称为水凝物。烟、霾、尘埃和其他凝结核被称为岩石流星。雷声和闪电是电凝物的例子,它们是可见或可听见的大气电表现形式。这些各种现象是气象学家研究的对象和事件。
随着长期月球探索和居住的追求越来越接近现实,人们正在广泛努力有效减轻月球表面尘埃的污染和渗透。这种尘埃对人类有害,往往会顽固地粘附在所有暴露的表面上,导致性能问题并最终导致失败。虽然已经开发了几种主动和被动技术来应对这一挑战,但评估这些技术在实际月球环境中的性能极其重要。风化层粘附特性 (RAC) 实验有效载荷为这种评估提供了重要机会。RAC 有效载荷由 Alpha Space 为美国国家航空航天局 (NASA) 设计,计划于 2023 年搭乘 Firefly Aerospace Blue Ghost 着陆器飞往月球。由于可用于此次任务的材料数量有限,因此做出明智的选择至关重要。NASA 兰利研究中心选择了两种聚合物、一种碳纤维增强复合材料和一种金属合金作为多样化的结构材料。每种材料都使用激光烧蚀图案进行地形修改。本文简要介绍了此次月球表面实验所选用的被动式除尘材料和表面的选择和测试程序以及获得的一些结果。
考虑到可以应用的各种技术的复杂性,对古老的纺织品进行系统研究并不总是那么简单,本文以HS(Holy Shorh Roud)为例,讨论了与相对结果相对结果应用的最新测试。在简要介绍了纺织品并解释了其复杂性后,本文介绍了1978年获得的一些测试和结果。织物中存在的黑点,可归因于人的图像,添加有关其可能起源的有趣信息。通过将传统的信息与1988年进行的放射性碳测试和创新技术产生的其他新约会结果进行比较,讨论了约会问题。从HS真空吸尘的尘埃,用于对来自外部污染的人类DNA进行研究,提供了对遗物起源的有趣假设;另外,在这些尘埃中,电子微粒为拜占庭习俗提供了有趣的假设。最后,还考虑了与纺织品保护有关的问题。此示例显示了如何从纺织品有趣的科学结果和对先前历史假设的确认中获得的可能性。关键词:古代纺织品,神圣的裹尸布,DNA,体液,技术,约会,历史信息1。引言世界上有许多历史和考古发现,鲜为人知的起源可能会经过详细的研究。其中没有