预测性逆合合成一直是有机化学的长期目标,13 - 16,使用深神网络取得了明显的进步。17,18通过大量的有机反应(例如Scifinder 19和Reaxys)的商业数据库的可用性,这些机器学习成功得到了实现。目前尚不存在20种无机材料合成反应的商业数据库。但是,由于文献中已经有成千上万的成功材料综合报告,因此发表论文的文本挖掘合成食谱可以提供广泛的专家知识来源,以培训机器学习模型,以实现预测性无机材料合成。在2016年至2019年之间,I‡是劳伦斯·伯克利国家实验室Gerbrand Ceder研究小组的博士后研究员,并参加了31 782固体合成食谱的文本挖掘21和35 675基于解决方案的合成食谱22。在这里,我在尝试构建机器学习(ML)模型以从该数据集构建机器学习模型(ML)模型的回顾性帐户。顺便说一句,这个故事遵循Gartner的“炒作周期”,23,它通过(1)技术触发,(2)inded期望的峰值,(3)幻灭谷,(4)启蒙运动的斜坡,以及(5)生产力的平稳。这里的观点是我自己的,不一定是我的合着者在文本挖掘出版物中共享的。在这里,我们首先审查用于构建文本开采食谱数据库的自然语言处理策略。然后,我们根据数据科学的“ 4 Vs”评估了数据集,并表明数据集的数量,品种,真实性和速度的限制。尽管其中一些局限性源于文本挖掘中的技术问题,但我们认为这些局限性主要源于化学家过去如何探索和合成材料的社会,文化和人为偏见。24我们表明,在此文本挖掘数据集上训练的机器学习模型成功地捕获了化学家对材料合成的看法,但并没有对如何最好地合成新颖材料的实质性新的指导见解。另一方面,我们发现该数据集中最有趣的食谱实际上是异常的配方,即在固态合成中违反常规直觉的配方。这些异常的食谱也相对罕见,这意味着它们在uence回归或分类模型中不会显着。通过手动检查一些异常食谱,我们就固态反应的进行方式以及如何选择增强反应动力学和靶材料的选择性的前体提出了一个新的机械假设。这一假设推动了一系列高可见性的后续研究,25 - 28在经验上验证了我们假设的机制,这些机制是从文本开采的文献数据集中收集的。
什么是尝试权?• 尝试权是针对被诊断患有危及生命的疾病或病症、已用尽所有已批准的治疗方案且无法参加临床试验的患者的一种途径,使他们能够获取尚未获得美国食品药品管理局 (FDA) 批准的某些药物。• 尝试权允许符合条件的患者请求获取尚未获得 FDA 批准的某些研究药物(包括生物制剂)。• 根据尝试权,患者及其医生与正在开发药物或生物制剂的公司合作,请求获取药物,而无需 FDA 参与此过程。• FDA 不审查或批准尝试权请求。