1 发育肿瘤生物学实验室,Institut de Recerca Sant Joan de Déu,Hospital Sant Joan de Déu,Esplugues de Llobregat,08950 巴塞罗那,西班牙 2 巴塞罗那小儿癌症中心,Hospital Sant Joan de Déu,Esplugues de Llobregat,08950 巴塞罗那,西班牙 3 学校医学生物化学和分子生物学系临床实验室塞维利亚大学维尔根玛卡雷纳大学医院医学部,塞维利亚大学,塞维利亚,41009 塞维利亚,西班牙 4 塞维利亚大学维尔根玛卡雷纳大学医院医学院,肿瘤科服务部,塞维利亚大学医学院,41009 塞维利亚,西班牙 5 塞维利亚生物医学研究所 (IBiS),圣女罗克大学医院/CSIC/塞维利亚大学/CIBERONC,41013 塞维利亚,西班牙6 病理学西班牙塞维利亚大学圣母罗西奥/CSIC/塞维利亚大学/CIBERONC 医院,41013 塞维利亚,西班牙 7 塞维利亚大学医学院正常和病理细胞学和组织学系,41009 塞维利亚,西班牙 * 通讯地址:enrique.alava.sspa@juntadeandalucia.es (Ed Á .C.);lhontecillas-ibis@us.es (LH-P.) † 这些作者对本文的贡献与第一作者相同。 ‡ 这些作者对本文的贡献与最后一位作者相同。
铁路信号需要高安全性,因此多年来,具有经过验证的轨道的轨道电路已被用作故障安全的火车检测设备。尽管已经证明了轨道电路已有很多年了,但它们具有高能量消耗,并且需要大量电缆来控制多个信号信号,并且存在一些问题,例如需要铺设大量电缆,这需要大量时间来调查故障的原因并恢复电路。此外,近年来,无线火车控制系统已经出现,并且存在出轨电路的趋势,但是由于成本问题,中小型铁路运营商没有采用它们。因此,为了改善这些问题,我们已经将新的单生波轨道电路(SW-TC)作为新的轨道电路设备进行了研究和开发。本文描述了孤立波轨道电路的研发结果。这项研究清楚地表明,现有轨道电路的问题可以得到改善,并且还可以配备各种功能,这些功能在现有的轨道电路中找不到,该功能的优势是将其引入铁路运营商,并且是一个易于管理的廉价系统。
尤文氏肉瘤 (EWS) 是儿童和年轻人中第二常见的骨和软组织相关恶性肿瘤。它由融合致癌基因 EWS/FLI1 驱动,具有快速生长和早期转移的特征。我们之前发现,mRNA 结合蛋白 IGF2BP3 是 EWS 的重要生物标志物,因为原发性肿瘤中 IGF2BP3 高表达预示着 EWS 患者预后不良。我们还证明 IGF2BP3 可增强 EWS 细胞的锚定非依赖性生长和迁移,这表明 IGF2BP3 可能作为 EWS 进展的分子驱动因素和预测因子。本研究旨在进一步确定 IGF2BP3 在 EWS 进展中的作用。我们证明,在特征明确的 EWS 肿瘤标本中,高 IGF2BP3 mRNA 表达水平与 EWS 转移和疾病进展相关。 IGF2BP3 水平较高的 EWS 肿瘤具有富含趋化因子介导的信号通路的特定基因特征。我们还发现 IGF2BP3 通过 CD164 调节 CXCR4 的表达。值得注意的是,在 CXCL12 刺激下,CD164 和 CXCR4 在 EWS 细胞的质膜上共定位。我们进一步证明,IGF2BP3、CD164 和 CXCR4 表达水平在临床样本中具有相关性,并且 IGF2BP3/CD164/CXCR4 信号通路促进了 EWS 细胞在 CXCL12 和缺氧条件下的运动性。呈现的数据将 CD164 和 CXCR4 确定为新的 IGF2BP3 下游功能效应物,表明 IGF2BP3/CD164/CXCR4 致癌轴可能作为 EWS 侵袭性的关键调节因子。此外,IGF2BP3、CD164 和 CXCR4 表达水平可能构成预测 EWS 进展的新型生物标志物组。
Orita,A。Mukai,H。Tomita,S。Tomita,K。Bamagishi,H。Ebi,Y。Tamada,K。Kamada,H。Woo,F。Ishida,E。Takada,H。 /div;Orita,A。Mukai,H。Tomita,S。Tomita,K。Bamagishi,H。Ebi,Y。Tamada,K。Kamada,H。Woo,F。Ishida,E。Takada,H。 /div;
[纸质评论摘要] 1。文章内容本文通过使用TOL2 transposon将导向RNA(GRNA)敲入基因组来建立了一种方便地创建条件敲除小鼠的方法。 2.纸质评论1)为研究目的而开创性和独创性,使用特定周期和组织特异性的条件敲除小鼠至关重要,以分析单个水平的基因功能。但是,传统的CRE/LOXP方法需要多种小鼠菌株的交配,这需要时间和精力。在此背景下,申请人结合了三个现有系统:转座系统,CRE/LOXP系统和CRISPR/CAS9系统,以建立一个系统,允许在短时间内更加方便地创建有条件的淘汰小鼠。这种观点值得认可。 2)社会意义从这项研究中获得的主要结果如下。 1。cag-creer小鼠和rosa-lsl-cas9敲入小鼠被体外受精,质粒和TOL2转座子mRNA,其在TOL2识别序列中夹在小鼠酪氨酸酶的GRNA之间的序列,将Tyr GRNA插入了Born Born Rece的6.3%-13.6%中。 2。当他对出生的小鼠施用他莫昔芬时,在某些情况下观察到头发颜色的变化有限。 3。在三只小鼠(TG1、2、3)中观察到缺失和插入3.1%,6.8%和7.5%的酪氨酸酶基因。 4。当F0雄性小鼠交配时,11.1%的F1小鼠显示GRNA盒传播。如上所述,申请人已经建立了一个系统,该系统允许在短时间内更方便,更简单地创建有条件的敲除小鼠。可以说这是一项有用的研究发现,可以加速个人水平的基因的功能分析。 3)在这项研究中,使用T7分析和深层测序分析了GRNA的基因组裂解,并使用PCR或Southern印迹分析了下一代小鼠中GRNA盒的传播。这种方法是在足够的分子生物学实验技术的支持下进行的,这表明申请人的知识和技术技能在研究方法上足够高,同时可以看出,这项研究是在非常谨慎的准备中进行的。
转座元素对秀丽隐杆线虫的姐妹种类(可转座元素的影响对C. inopinata的进化,Caenorhabditis elegrans的亲戚)
何文伟博士现为斯坦福大学理论物理研究所博士后学者,研究非平衡量子多体现象和新兴量子技术的应用。此前,他是哈佛大学的摩尔博士后研究员,与 Mikhail Lukin 教授和 Eugene Demler 教授一起工作。从 2022 年 8 月开始,他将担任新加坡国立大学校长青年(助理)教授。何文伟于 2017 年在日内瓦大学师从 Dmitry Abanin 教授获得博士学位,2015 年在滑铁卢大学/圆周研究所师从 Guifre Vidal 教授获得理学硕士学位,2013 年在普林斯顿大学获得学士学位,与 Duncan Haldane 教授一起工作。摘要:普遍性是指复杂系统普遍属性的出现,这些属性不依赖于精确的微观细节。量子热化是强相互作用量子多体系统非平衡动力学的一个例子,其中局部区域随着时间的推移变得由吉布斯集合很好地描述,而该集合仅受少数几个系统参数(例如温度和化学势)控制。局部区域与其补体(“浴”)之间产生的大量纠缠是这种普遍性出现的关键。在这次演讲中,我将介绍一种新的普遍行为,它源于某些类型的量子混沌多体动力学,超越了传统的热化。我将描述单个多体波函数如何编码由小子系统支持的纯态集合,每个纯态都与局部浴的(投影)测量结果相关。然后,我将展示这些量子态的分布如何接近均匀随机量子态的分布,即集合形成量子信息理论中所谓的“量子态设计”。我们的工作为研究量子混沌提供了一个新视角,并在量子多体物理、量子信息和随机矩阵理论之间建立了桥梁。此外,它还提供了一种实用且硬件高效的伪随机态生成方法,为设计量子态层析成像应用和近期量子设备的基准测试开辟了新途径。