收稿日期: 2024–05–13 ; 修回日期: 2024–06–28 ; 录用日期: 2024–07–05 ; 网络首发时间: 2024–07–19 15:22:18 网络首发地址: https://doi.org/10.13801/j.cnki.fhclxb.20240718.003 基金项目: 国家自然科学基金 (51902125) ; 吉林市科技发展计划资助项目 (20210103092) ; 第七批吉林省青年科技人才托举工程 (QT202316) National Natural Science Foundation of China (51902125); Science and Technology Development Plan of Jilin City (20210103092); Seventh Batch of Jilin Province Young Science and Technology Talents Promotion Project (QT202316) 通信作者: 陈杰 , 博士 , 副教授 , 硕士生导师 , 研究方向为碳纤维复合材料的开发与应用 E-mail: jiechendr@163.com
新型刺激和记录系统极大地促进了神经元和神经网络研究,这些系统通常使用采用先进电子技术(尤其是微纳米级 CMOS)制造的生物芯片。传感器和神经元活动记录所涉及的传导机制模型有助于优化传感设备架构及其与读出电路的耦合,以及解释测量数据。本文首先概述了最近发表的用于体外研究的采用现代(基于 CMOS)微纳米技术制造的集成有源和无源微纳米电极传感设备,然后介绍了一种混合模式设备电路数值分析多尺度和多物理场模拟方法来描述神经元传感器耦合,适用于得出有用的设计指南。从最相关的电气性能指标(包括信噪比)的角度更详细地分析了一些代表性结构和耦合条件。
海洋与地球科学,南安普敦大学,南安普敦,英国B海洋科学学院 Sciences, University of California, Los Angeles, Los Angeles, California f Department of Geosciences, Tel Aviv University, Ramat Aviv, Israel g Woods Hole Oceanographic Institution, Woods Hole, Massachusetts h National Oceanography Centre, Southampton, United Kingdom i British Antarctic Survey, Cambridge, United Kingdom j NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey k Program in Atmospheric和海洋科学,普林斯顿大学,新泽西州普林斯顿大学
摘要:与大脑相关的实验受自然的限制,因此生物学见解通常受到限制或不存在。这在脑癌的背景下尤其有问题,这些脑癌的存活率较差。为了生成和检验新的生物学假设,研究人员开始使用可以模拟肿瘤进化的数学模型。但是,这些模型中的大多数都集中在单尺度的2D细胞动力学上,并且无法捕获3D大脑中复杂的多尺度肿瘤侵袭模式。在这些入侵模式中的特殊作用可能是通过微纤维的分布来发挥的。为了明确研究脑微纤维在3D入侵肿瘤中的作用,在这项研究中,我们扩展了先前引入的2D多尺度移动边界框架,以考虑3D多尺度肿瘤动力学。T1加权和DTI扫描用作我们模型的初始条件,并参数扩散张量。数值结果表明,包括各向异性扩散项在某些情况下(对于特定的微生物分布)可能导致肿瘤形态的显着变化,而在其他情况下则没有影响。这可能是由潜在的大脑结构及其显微镜表示引起的,它似乎通过基本的细胞粘附过程影响了癌症的侵袭模式,从而使扩散过程黯然失色。
建筑结构的响应以多尺度运动学为特征,其复杂关系及其对工程荷载响应的影响仍未完全了解,因此需要进一步研究。更确切地说,缺乏能够提供多尺度数据的实验方法仍然是一个关键问题。本文介绍了对定向能量沉积制造的薄壁拉胀金属晶格进行的压溃试验的实验和数值分析。这项工作重点关注发生在 (a) 晶胞微观尺度和 (b) 对应于均质连续体的宏观尺度上的两尺度应变局部化。感兴趣的结构被定义为 2D 拉胀线框的挤压,并允许应用专门用于识别两个考虑尺度上的运动学的改进的数字图像相关方案。具体而言,通过跟踪晶格交叉的变形来研究微观运动学,而从虚拟晶胞角的运动推导出宏观应变。结果表明,晶格的整体弹塑性响应完全由特定位置的塑性铰链形成所驱动,从而导致特征变形模式,并最终导致相邻晶胞的集体行为。配套有限元计算与实验结果非常吻合,因此能够评估建模假设、晶胞几何形状、应变率和几何缺陷对建筑材料整体响应的影响。
ClémentBrochet,Laure Raynaud,Nicolas Thome,Matthieu Plu,ClémentRambour。具有生成对抗网络的公里尺度数值天气预测的多元仿真:概念证明。地球系统的人工智能,2023,2(4),10.1175/aies-d-23- 0006.1。Meteo-044438969
大脑的复杂组织从神经元内的分子级过程到大型网络,因此必须了解这种多尺度结构以发现大脑功能并解决神经系统疾病至关重要。多尺寸的大脑建模已成为一种变革性方法,将计算模型,高级成像和大数据集成以弥合这些组织水平。本评论探讨了将微观现象与宏观大脑功能联系起来的挑战和机遇,并强调了推动领域进步的方法。它还强调了多尺度模型的临床潜力,包括它们在推进人工智能(AI)应用程序和改进医疗保健技术中的作用。通过检查当前的研究并提出了跨学科合作的未来方向,这项工作展示了多尺度大脑建模如何彻底改变科学的理解和临床实践。
摘要:本文深入研究了地下储氢的生物地球化学建模方法。它深入研究了地下氢的复杂动力学,重点研究了小型(孔隙实验室规模)和储层规模模型,强调了捕捉多孔介质中的微生物、地球化学和流体流动动态相互作用以准确模拟存储性能的重要性。小规模模型提供了对局部现象(例如微生物氢消耗和矿物反应)的详细见解,并且可以根据实验室数据进行验证和校准。相反,大规模模型对于评估项目的可行性和预测存储性能至关重要,但目前还不能通过实际数据来证明。这项工作解决了从精细尺度到储层模型的过渡挑战,整合了空间异质性和长期动态,同时保留了生物地球化学的复杂性。通过使用 PHREEQC、Comsol、DuMuX、Eclipse、CMG-GEM 等多种模拟工具,本研究探索了建模方法如何发展以纳入多物理过程和生化反馈回路,这对于预测氢的保留、流动和潜在风险至关重要。研究结果突出了当前建模技术的优势和局限性,并提出了一种工作流程,以充分利用现有的建模功能并开发储层模型来支持氢存储评估和管理。
早期在线版本:该初步版本已被接受在美国气象学会公告中的出版,可以完全引用,并已被分配为DOI 10.1175/BAMS-D-23-23-0178.1。最终的排版复制文章将在发布时在上述DOI上替换EOR。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月14日发布。 https://doi.org/10.1101/2025.02.13.637069 doi:Biorxiv Preprint
