This is the annual report of the Imperial College Consortium on Pore-Scale Modelling and Imaging.At our project meeting we will highlight the progress we have made over the last year as well as presenting plans for the future.Our activities have continued to grow this year – indeed we now have over 20 researchers in the group.现在,从孔到田间尺度,我们在氢存储方面做出了巨大的集成努力,并继续强调机器学习。我们还继续在传统的二氧化碳存储区域工作,同时追求与制造多孔材料设计有关的新想法。Our overall theme is to study flow in porous media with application to the energy transition.The highlight of 2024 for me was my election as a Fellow of the Royal Society.这是一项巨大的荣誉,反映了我多年来有幸与之合作的许多出色的博士学位学生,博士后和其他同事的辛勤工作,想象力和奉献精神。Linqi Zhu who left in 2023 is now back at Imperial as a post-doc supervised by Gege Wen who is a new lecturer in the department.他的研究利用了我们必须构建机器学习模型的大型数据集,以预测和解释多相流,尤其是为了充分利用时间分辨的同步加速器图像。He works closely with Menglu Kang, who is a new visitor from China.In return, two of our visitors – Yang Gao and Gang Luo – have now left, and Shanlin Ye is due to return to China early this year.We no longer prepare a separate written report.faisal aljaberi已从阿联酋的哈利法大学拜访了我们,正在研究改进方法,以计算孔隙尺度图像的曲率和接触角,并使用结果改善我们的网络建模代码中的可润滑性表征。我们欢迎了几位新的博士生:奥拉南·阿里亚里特(Oranan Ariyarit),她将在油田中学习二氧化碳存储,并将其应用于其本地泰国的项目; Mohammed Bello who will work on reactive transport; Sasha Karabasova who is studying rate-dependent effects in flow in porous media through direct numerical simulation; and Yuxi Liang, who has transferred from Civil Engineering and is developing a pore-scale model of salt precipitation in carbon dioxide storage.As a matter of routine practice, we now make all our publications – with associated codes and data – open access.而不是整理一些论文,而是简单地提供了我们最近工作的DOI链接:这样,您可以从我们在2024年发表的大量材料中阅读您的任何兴趣。作为一开始,可以阅读一篇文章发表在《新室间杂志》首发中的文章,该文章对多孔媒体的研究需求提出了能源过渡的研究:这为未来几年中的工作提出了愿景。Of course, we have many more results and ideas to present; these will be discussed at the meeting itself.
进行了对衬里完整性的热量表和视觉检查进行了表演后评论,在6个月内进行了服务后,将加热炉的冷面温度与Superwool Prime Pyro折叠模块进行了比较,并与使用RCF模块安装的等效热炉(在940°C持续2个小时)对衬里完整性的热量表和视觉检查进行了表演后评论,在6个月内进行了服务后,将加热炉的冷面温度与Superwool Prime Pyro折叠模块进行了比较,并与使用RCF模块安装的等效热炉(在940°C持续2个小时)
在未来气候变化下,城市几何形状对平均辐射温度的影响:对三个欧洲城市的研究研究了城市几何形状对三个欧洲城市白天热应激的影响。研究发现,茂密的城市结构可以减轻夏季的白天热应激,并且不会在冬季引起实质性变化。此外,它得出的结论是,在茂密的城市环境中,更有多样化的城市热环境可以弥补冬季的太阳能通道减少。
海洋与地球科学,南安普敦大学,南安普敦,英国B海洋科学学院 Sciences, University of California, Los Angeles, Los Angeles, California f Department of Geosciences, Tel Aviv University, Ramat Aviv, Israel g Woods Hole Oceanographic Institution, Woods Hole, Massachusetts h National Oceanography Centre, Southampton, United Kingdom i British Antarctic Survey, Cambridge, United Kingdom j NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey k Program in Atmospheric和海洋科学,普林斯顿大学,新泽西州普林斯顿大学
遗传和语言证据表明,在亚北极地区生活了数千年后,北阿萨巴斯卡人于大约 1,000 年前开始向美国西南部迁移。人类学家认为,这种部分外迁和一些相关的就地行为变化是大规模火山爆发导致该地区驯鹿群大量死亡的结果。然而,在这些变化发生时,该地区的人口似乎有所增加,这种人口变化可能导致领土意识增强、资源压力增加和专业化程度提高。基于该地区现有的文化动态综合、对出土材料的分析以及阿拉斯加和育空地区的景观数据,这项研究表明,阿萨巴斯卡的转变代表了鲑鱼和驯鹿资源专业化的逐渐转变,饮食范围总体增加,这表明行为转变与人口的逐渐变化更加一致。此外,这种行为转变在距今约 1150 年前火山爆发时就已经发生了,表明该地区的最终迁移是人口压力的结果。总之,这项研究详细阐述了狩猎采集者群体的复原力和适应力的复杂动态,并提供了一个可测试的模型来解释过去的迁移。
急性和慢性肾脏疾病对个人和公共健康造成沉重负担,而且发病率持续上升。尽管如此,并且人们高度关注疾病机制的研究,但很少有新的治疗方法推广到临床。部分原因是许多(如果不是大多数的话)治疗方法对于肾小球或肾单位内的肾脏疾病部位的药理学效果不佳。考虑到这一点,在过去十年中,更具体地说是在过去两年中,纳米颗粒系统在将治疗药物输送到肾脏疾病部位方面取得了重大进展。在这里,我们概述了为改善肾脏疾病治疗发展而开发的各种纳米材料类别、用于提供肾脏积累的策略,以及它们所关注的疾病模型(如果有的话)。然后,我们重点介绍一种特定的系统,即聚合物中尺度纳米颗粒,该系统已在 13 篇出版物中得到广泛使用,与其它器官相比,其对肾小管上皮的靶向特异性高出 26 倍。虽然过去几十年来已有多种纳米药物进入临床,包括基于 mRNA 的冠状病毒疾病疫苗等,但没有一种是专门针对肾脏疾病的。总而言之,我们相信,纳米级肾脏靶向技术的快速发展以及临床医生、科学家、工程师和其他利益相关者的共同关注将在未来十年内推动其中一种或多种技术进入临床试验。
委员会成员批准了 Joji Matsumoto Frank K. Lu 的硕士论文 ___________________________________________
1. 澳大利亚海洋科学研究所,阿拉弗拉帝汶研究中心,达尔文,北领地 0810,澳大利亚;2. 弗林德斯大学科学与工程学院,贝德福德公园,南澳大利亚阿德莱德 5042,澳大利亚;3. 综合海洋观测系统 (IMOS) 动物追踪设施,悉尼海洋科学研究所,莫斯曼,新南威尔士 2088,澳大利亚;4. 麦考瑞大学自然科学学院,北莱德,新南威尔士 2109,澳大利亚;5. 澳大利亚联邦科学与工业研究组织海洋与大气研究所,昆士兰生物科学区,圣卢西亚,昆士兰 4011,澳大利亚;6. 加利福尼亚大学海洋科学研究所,加利福尼亚州圣克鲁斯 95064;7. 塔斯马尼亚大学孟席斯医学研究所,塔斯马尼亚州霍巴特 7001,澳大利亚; 8. 查尔斯·达尔文大学环境与生计研究所,达尔文,北领地 0909,澳大利亚;9. CSIRO 海洋与大气,3-4 Castray Esplanade,霍巴特,塔斯马尼亚 7000,澳大利亚;10. 卡尔顿大学鱼类生态与保护生理学实验室,安大略省渥太华 K1S 5B6,加拿大;11. 詹姆斯库克大学科学与工程学院,昆士兰州汤斯维尔 4811,澳大利亚;12. 新南威尔士州初级产业部斯蒂芬斯港渔业研究所,新南威尔士州泰勒斯海滩 2315,澳大利亚;13. 昆士兰大学生物医学学院 Manta 项目,昆士兰州圣卢西亚 4072,澳大利亚;14. 詹姆斯库克大学科学与工程学院海洋数据技术中心,昆士兰州汤斯维尔 4811,澳大利亚; 15. 新南威尔士渔业部初级产业部,新南威尔士州科夫斯港 2450,澳大利亚;16. 悉尼科技大学生命科学学院鱼类生态学实验室,新南威尔士州 2007,澳大利亚;17. 布雷斯特大学、法国国家科研中心、IRD、Ifremer、UMR 6539 LEMAR,普卢扎内,法国;18. 澳大利亚海洋科学研究所,昆士兰州汤斯维尔 4810,澳大利亚;19. 弗林德斯大学科学与工程学院,南澳大利亚州阿德莱德贝德福德公园 5042,澳大利亚;20. 南澳大利亚研究与发展研究所,南澳大利亚州西海滩 5024,澳大利亚;21. 昆士兰大学生物医学科学学院,昆士兰州圣卢西亚 4072,澳大利亚; 22. 阳光海岸大学科学、技术与工程学院,莫顿湾,皮特里,昆士兰州 4502,澳大利亚;23. 阳光海岸大学科学与工程学院,马鲁奇多尔 DC,昆士兰州 4558,澳大利亚;24. 哥斯达黎加大学海洋科学和湖沼学研究中心和生物学系,哥斯达黎加圣何塞 2060-11501;25. 澳大利亚海洋科学研究所,印度洋海洋研究中心,西澳大利亚州克劳利 6009,澳大利亚;26. 佛罗里达国际大学环境研究所和生物科学系,佛罗里达州北迈阿密 33181;27. 海洋生态系统部门,新南威尔士州初级产业部,新南威尔士州赫斯基森 2540,澳大利亚;28. 悉尼海洋科学研究所,新南威尔士州莫斯曼 2088,澳大利亚;29. 新南威尔士大学生物地球与环境科学学院,新南威尔士州悉尼 2052,澳大利亚;30. 温莎大学大湖环境研究所,安大略省 N9B 9P4,加拿大;31. 塔斯马尼亚大学海洋与南极研究所渔业和水产养殖中心,塔斯马尼亚州霍巴特 7001,澳大利亚;32. 西澳大利亚大学生物科学学院,西澳大利亚州克劳利 6009,澳大利亚;33. 默多克大学野外站,西澳大利亚州珊瑚湾 6701,澳大利亚;34. 维多利亚州国家公园协会,维多利亚州卡尔顿 3053,澳大利亚; 35. 澳大利亚默多克大学 Harry Butler 研究所可持续水生生态系统中心,西澳大利亚默多克 6150,澳大利亚;36. ECOCEAN,Serpentine,
新型刺激和记录系统极大地促进了神经元和神经网络研究,这些系统通常使用采用先进电子技术(尤其是微纳米级 CMOS)制造的生物芯片。传感器和神经元活动记录所涉及的传导机制模型有助于优化传感设备架构及其与读出电路的耦合,以及解释测量数据。本文首先概述了最近发表的用于体外研究的采用现代(基于 CMOS)微纳米技术制造的集成有源和无源微纳米电极传感设备,然后介绍了一种混合模式设备电路数值分析多尺度和多物理场模拟方法来描述神经元传感器耦合,适用于得出有用的设计指南。从最相关的电气性能指标(包括信噪比)的角度更详细地分析了一些代表性结构和耦合条件。