本文概述了欧盟资助的 Horizon 2020 合作项目 CENTRELINE(“机身尾流填充推进集成概念验证研究”)正在进行的研究及其中期结果,旨在展示一种突破性的协同推进机身集成方法的概念验证,即所谓的推进机身概念 (PFC)。该概念的特点是将涡轮电力驱动的推进装置集成在机身的最后部分,专用于机身尾流填充。目前,CENTRELINE 处于 TRL 1-2 阶段,其目标是将 PFC 的技术关键特性成熟到 TRL 3-4 阶段。目标概念验证的核心由两个实验测试活动组成,这些测试活动由高保真 3D 数值模拟和集成多学科设计优化技术提供支持,用于空气动力学、航空结构以及能源和推进系统。
摘要 本研究重点研究了确定作用于具有自适应机翼几何形状(变形几何形状)的微型飞行器 (MAV) 的空气动力的实验和分析方法。本设计的目标是通过使用智能材料修改机翼的弯曲度和厚度,以在飞行阶段实现最佳自主性或航程。因此,研究了最相关的变形配置。它们由马德里理工大学 (UPM) 通过增材制造设计和制造,并在国家航空航天技术研究所 (INTA) 的低速风洞中进行了测试。粒子图像测速技术用于研究不同变形配置的尾流结构。实验测试以 10 m/s 的自由流速度针对从 0º 到 30º 的几个攻角进行。采用了两种理论方法:横向动能积分和 Maskell 理论;分别用于确定诱导阻力系数和升力系数。对模型后面的尾涡系统进行了完整的定性和定量研究,以了解变形几何的气动行为。
1 Whiffle, Molengraaffsingel 8, 2629 JD 代尔夫特,荷兰 2 代尔夫特理工大学,工程系统与服务系,Jaffalaan 5, 2628 BX 代尔夫特,荷兰 3 代尔夫特理工大学,地球科学与遥感系,Stevinweg 1, 2628 CN 代尔夫特,荷兰
摘要。稳定分层流条件通常表现出风向转向,即风向随高度变化。当风力涡轮机经历这种转向流时,产生的尾流结构往往会呈现出拉伸成椭圆形,而不是对称形状或卷曲形状。观察研究表明,尾流转向的幅度小于流入流的转向,而使用执行器盘模型和执行器线模型进行的大涡模拟表明流入流转向和尾流转向之间存在一系列关系。在这里,我们展示了一系列大涡模拟,其中有一系列转向形状、一系列转向幅度、一系列风速和风力涡轮机转子的两个旋转方向,以研究对尾流偏转角的影响。这些结果可以指导尾流转向在稳定分层流中的应用。
摘要。由于全球海上风电装机容量快速增长,单个风电场的规模也在不断扩大。这对预测能源产量的模型提出了挑战。例如,当前一代尾流模型大多是在现有规模小得多的风电场上校准的。这项工作利用大气大涡模拟分析了未来多千兆瓦风电场的年能源产量和尾流损失。为此,针对一系列假设的 4 GW 海上风电场场景模拟了 1 年的实际天气。这些场景在应用的涡轮机类型、安装容量密度和布局方面有所不同。结果表明,当单个涡轮机的额定功率较大时,在总安装容量保持不变的情况下,生产数量会显著增加。即使对于额定功率相似但功率曲线略有不同的涡轮机类型,也发现生产存在显著差异。虽然风速被确定为决定气动损失的最主要因素,但已确定大气稳定性和边界层高度的明显影响。通过分析第一排涡轮机的损耗,全球年平均阻塞效应估计在 2% 到 3% 之间,但在稳定分层条件和风速约为 8 ms − 1 时,阻塞效应可达到 10% 以上。本研究使用高保真建模技术,深入了解未来多千兆瓦风电场在全年真实天气条件下的性能。
图 1. 近尾流湍流强度分布 [1] ...................................................................................................... 2 图 2. 远尾流湍流强度分布 [2] ...................................................................................................... 3 图 3. 2.06 倍叶片直径处的相对湍流强度 [3] ...................................................................................... 4 图 4. 近尾流轴向速度云图(左)和切向速度云图(右) [4] ............................................................. 5 图 5. 2.5 倍涡轮机直径处的实验和 CFD(LES)湍流强度 [6] ............................................................. 6 图 6. CFD(LES)湍流图 7. 基本风洞示意图 ...................................................................................................................................... 8 图 8. 蜂窝类型 [7] ...................................................................................................................................... 11 图 9. 湍流减少因子 [10] ............................................................................................................................. 15 图 10. 用于模型风力涡轮机的 NACA 4412 叶片 ............................................................................................. 23 图 11. 模型风力涡轮机轮毂 .............................................................................................
本文介绍了背景信息,并提供了联邦航空管理局 (FAA) 尾流湍流计划 RECAT(即重新分类)特定方面的状态更新。RECAT 的基本前提是,可以使用更完整的尾流相关参数集来改进尾流分离,而不是使用基于最大起飞重量的现有 FAA Order JO 7110.65 分类尾流湍流分离最小值。然后,此过程可以安全地降低尾流湍流分离最小值,使其低于 FAA Order JO 7110.65 中规定的最小值。本文介绍了 RECAT 的整体三阶段方法,最终目标是实现动态成对分离。目前,第二阶段或基于静态成对的尾流湍流分离已准备好由联邦航空管理局实施。本文介绍了分析方法,包括 RECAT 第二阶段开发中使用的数据源和严重程度指标。
人们认为,海山通过非稳定尾流过程和产生内波来促进海洋混合,内波从海山传播出去,然后断裂。对于均匀正压流 U 中的理想孤立海山(特征宽度为 D 和高度为 H ),研究了这些过程的相对重要性。使用一系列科里奥利参数 f 和浮力频率 N,以便考虑低弗劳德数( U / NH )和低罗斯贝数( U / fD )的宽参数空间。结果表明,在这一参数空间范围内,涡旋过程在能量上主导内波能量通量。专门研究了内波场,将其划分为稳定背风波和非稳定尾流产生的波。结果发现,现有的分析理论无法解释背风波能量通量。然后将 Smith 的背风波模型扩展到低弗劳德数区域,并考虑旋转的影响。虽然此前的强分层实验表明,只有障碍物的顶部 U / N 会产生内波,但旋转的影响似乎会改变这种造波高度。一旦修改 U / N 高度以考虑旋转,扩展的 Smith 模型就可以合理准确地再现背风波能量通量。
摘要 减少航运排放的需要迫在眉睫。未来的潜在燃料候选包括氢气和甲醇。本研究试图通过采用自下而上的方法来量化燃料消耗和排放,对这两种燃料类型进行公平的比较。以一艘液化天然气运输船进行的 10,755 海里的航程作为案例研究。为氢燃料电池能源系统和重整甲醇燃料电池能源系统开发了模型。模拟计算了每种方案的燃料需求和尾气排放量。然而,由于氢气和甲醇都不是自然产生的,因此还应考虑生产这些燃料所需的能量。已经模拟了三种生产方法:带电解的风力涡轮机;带电解的电网供应;蒸汽甲烷重整。此后,计算了每种燃料方案的总生命周期排放量并将其与现有船舶进行比较。通常,这被称为油井到尾流的排放,但对于绿色燃料,风电场到尾流可能更合适。结果表明,改用甲醇最多可减少 8.3% 的尾气排放和 18.8% 的风力发电厂尾气排放,但前提是燃料完全由可再生能源生产。液氢燃料电池能源系统产生的风力发电厂尾气排放为零,所需的可再生能源比甲醇少 33.3%。术语
摘要。尾流效应是风电场设计和分析中的一个关键挑战。对于浮动风电场,平台在涡轮机的气动载荷下发生偏移,并受到系泊系统的约束,系泊系统的允许偏移量可能有很大变化。当考虑尾流转向时,涡轮机的侧风偏移可以抵消尾流的横向偏转。这项工作提出了一种工具,可以有效地模拟浮动风电场尾流转向和平台偏移的耦合影响。该工具依赖于频域风电场模型 RAFT 和稳态尾流模型 FLORIS。使用 FAST.Farm 进行了验证,然后将该工具应用于一个简单的双涡轮机案例研究。在比较对涡轮机功率的影响时,考虑了一系列具有增加的平台偏移和不同偏航错位角的系泊系统。探讨了对涡轮机间距和系泊系统方向的其他敏感性。结果表明,顺风涡轮机发电存在一个最不理想的观察圈宽度,该宽度随偏航错位角和涡轮机间距而变化。此外,偏航失准条件下的涡轮机偏移量会因系泊系统相对于转子平面的方向而发生显著变化,进而影响最佳失准角。这些结果凸显了在评估浮动风力发电机组的尾流转向策略时考虑浮动平台偏移量和系泊系统的重要性。