降低骑手的阻力系数骑手还可以尝试通过流线型来降低阻力系数。阻力系数是衡量物体形状和空气在其周围流动的平稳程度的指标。如前所述,非流线型物体在其后留下较大的低压尾流,阻力系数较高。流线型物体在其后留下较小的尾流,因此阻力系数较低,总体阻力水平较低。下图说明了流线型较差的物体如何留下较大的湍流低压尾流(这又增加了它们的整体气动阻力)。
降低骑手的阻力系数骑手还可以尝试通过流线型来降低阻力系数。阻力系数是衡量物体形状和周围空气流动平稳程度的指标。如前所述,非流线型物体在其后留下较大的低压尾流,阻力系数较高。流线型物体在其后留下较小的尾流,因此阻力系数较低,总体阻力水平也较低。下图说明了流线型较差的物体如何留下较大的湍流低压尾流(这又增加了它们的整体气动阻力)。
降低骑手的阻力系数骑手还可以尝试通过流线型来降低阻力系数。阻力系数是衡量物体形状和空气在其周围流动的平稳程度的指标。如前所述,非流线型物体在其后留下较大的低压尾流,阻力系数较高。流线型物体在其后留下较小的尾流,因此阻力系数较低,总体阻力水平较低。下图说明了流线型较差的物体如何留下较大的湍流低压尾流(这又增加了它们的整体气动阻力)。
本文介绍了亚音速下振荡半球形炮塔下游尾流响应的实验研究。振荡炮塔由安装在铝制矩形板上的炮塔外壳组成。炮塔组件设计为使炮塔以单一频率沿翼展方向振荡,与主要尾流模式的主频率一致。流体的基于共振的气动弹性响应导致炮塔沿翼展方向受迫振荡。安装在炮塔组件不同位置的多个加速度计用于测量局部位移。结果表明,炮塔以固定频率振荡,振荡频率范围为 0.3 至 0.55 马赫数,振荡幅度约为 1 毫米。在炮塔下游的隧道壁上放置了几个非稳定压力传感器,用于研究振荡炮塔的尾流响应。研究发现,与固定炮塔下游的尾流相比,振荡炮塔的压力波动能量较小,尾流在翼展方向上更加有序。
研究需求文件是专题网络 WakeNet2-Europe 的最终交付成果,是第六框架计划的一部分(合同编号 G4RT-CT-2002-05115)。WakeNet2-Europe 合作伙伴的专业知识涵盖了尾流湍流相关问题的整个范围,包括例如研究如何通过升力翼测量产生涡流,以及在真实操作环境中模拟重要的气象因素对涡流动力学实施的影响。虽然正在考虑的现象非常复杂,但基本问题是需要什么程度的细节才能掌握具有挑战性的操作尾流湍流相关问题。特别是,基于正式安全评估的新程序的批准在这里起着至关重要的作用。本文档描述了一组专家(基本上是 WakeNet2-Europe 合作伙伴)对尾流湍流领域的“研究需求”,并从一些外部方(例如 WakeNet-USA)那里获得了宝贵的意见。第一部分概述了尾流问题,该问题的特点是尾流遭遇风险与机场和空域容量之间的平衡。介绍了一些在不影响安全性的情况下提高容量的方案(CONOPS),然后讨论了改进评估安全问题的方法所需的研究。第二部分提供了更详细的信息,以阐明为什么需要在各个领域进行具体研究。它将特别有助于
完善指导、安全案例和支持静态成对离港分离矩阵监管的材料。根据交通组合和成对矩阵中新飞机类型的纳入情况,制定(即监管和相关安全案例)基于更多类别或不同类别的精细分离最小值方法,以更适合当地机场环境。支持监管部门批准的安全证据、进一步增加效益的细化以及允许促进与可选监管推动因素相对应的部署的整合
运行完成后,收集每个案例的数据并进行如下后处理。首先,将每次运行的 1000 秒时间域数据分成几段(参见图 3)。每次运行的前 200 秒被丢弃,因为尾流未完全形成。最后 100 秒也被丢弃,因为系统问题导致一些文件不完整。最后,将剩余的时间历史分为 200 到 600 秒的一段,其中下游涡轮机未运行 IPC,以及 700 到 900 秒的一段,此时它正在运行 IPC,并且 IPC 启动瞬变已经消失。虽然应该可以平稳启动 IPC,但过渡不是我们的研究重点,所以我们启动控制器时相当突然。在基线情况下,IPC 从未启用,以提供比较的基础。从尾流发展时间和尾流中的速度可以看出,平均涡轮到涡轮的流通时间为
基于卫星的合成孔径雷达(SAR)采集中唤醒特征的可检测性取决于描述检测过程中当前情况的各种物理参数。SAR中的船舶唤醒签名是复杂的结构,该结构由多个唤醒组件组成,这些尾流组件的出现不同,具体取决于当前的检测情况。对这些唤醒组件的可检测性有影响的物理参数称为影响参数。尽管几十年以来就开发了自动检测唤醒的各种方法,但没有系统地分析尾流组合和影响参数之间的可检测性与影响参数之间的依赖性。在这项研究中,将机器学习应用于对所有受影响参数的所有尾流组件之间的依赖性建模。分析机器学习模型的组成,以得出有关影响参数和唤醒组件的可检测性之间物理关系的陈述。对于这种类型的应用程序,引入了可检测性的优点和衍生陈述不确定性的措施。基于SAR图像中的船舶唤醒及其可检测性的模拟和/或物理减免的文献形成对比。
声源发出的部分声能将在穿过水时被吸收。吸收的量取决于海况。当风大到足以产生白浪并导致气泡在水面层聚集时,吸收率很高。在这种情况下,任何撞击水面的声音的一部分都会在空气中丢失,一部分会在海中向散射方向反射。在尾流和强流区域(如激流),声能损失更大。因此,由于假回声、高混响和吸收增加的综合影响,回声很难穿过尾流和激流。高频吸收比低频吸收更大。因此,低频往往传播得最远。
1. 旋翼飞机在 1000 英尺 QFE 以内可进行带电和无电操作。2. 不得飞越 Benson、Ewelme 和 Wallingford 村庄。3. 来访机组人员应注意,固定翼飞机的进场和停机位由不低于 600 英尺 QFE 的 Tutor/轻型固定翼飞机负责。4. 跑道西侧不得有滑行道,目前为西环路车道。5. 按照 VFR 或 IFR 进行目视进场时,尾流湍流分离的责任应由飞行员承担。小尾流湍流飞机之间的建议距离为 3 海里。为减少 RTF,同一尾流湍流类别的飞机之间将取消口头警告传输。6. Star-NG 雷达周围存在高敏感度 HIRTA(高强度无线电传输区),应避免出现这种情况。这不会影响任何英国固定翼或旋翼飞机起飞、降落或飞越任何跑道。距离雷达的安全距离为 376 米,最低安全高度为离地 357 英尺。机组人员应在安全的情况下避开 HIRTA,并在必要时与 ATC 协商,避免与其他交通发生冲突。