累积的水)以毫米(mm)为单位。 因此,有非常广泛的文献提出了用于在不同时间尺度(小时,每小时,每日,每月)下降水分布的模型。 例如,用于建模正降水的最流行的分布可能是伽马分布[79],由于其灵活的形状,它通常也提供适合每月降水量的足够适合,但是伽马分布无法在高时间尺度上捕获大降雨特征,即累积的水)以毫米(mm)为单位。因此,有非常广泛的文献提出了用于在不同时间尺度(小时,每小时,每日,每月)下降水分布的模型。例如,用于建模正降水的最流行的分布可能是伽马分布[79],由于其灵活的形状,它通常也提供适合每月降水量的足够适合,但是伽马分布无法在高时间尺度上捕获大降雨特征,即每天和每日。建模降水及其聚集体提出了与其他天气变量(例如温度)相比的独特挑战。精确地捕获随着时间或空间的降水的聚集行为对于许多应用至关重要,包括洪水或干旱风险评估。这需要对适当的依赖模型进行典范或隐式规范,以在时空中结合边缘分布,在时间和空间中,不仅极端,而且中度和低降水值都会有助于极端聚集体。特定于降水的另一个方面是其间歇性,这意味着当考虑完整的观察序列时,可以观察到许多零值。这需要将概率分布视为阳性降水的连续成分的混合物,而在没有沉淀的情况下以零为零成分。虽然整个分布对于降水很重要,但它的极端尤其引起了人们的关注,因为它们通过雨水引起的洪水对人们的影响[38],农业[99]和基础设施[85]。对局部极端的研究是极值分析[50,55]的重要早期应用,也是许多方法论发展的催化剂。的确,如果模型未正确指定,则将参数模型用于整个分布可能会导致尾部分位数估计值的显着偏差。因此,使用源自极值理论的模型来估计降水的尾矿[24,8,33]已成为普遍做法。本章回顾了用于研究极端降水的某些关键方面的统计方法,但没有任何声称是详尽的。第1.2节简要概述了典型的数据特征。第1.3节提出了单变量的概率分布,用于在极值和估计其参数的方法中建模可变性。然后,第1.4节演示了这些分布在代表不同持续时间和频率下的预提取强度或返回值时的应用。第1.5节说明了如何在空间上汇总信息以获得更有效的回报率估计值。上述部分中的方法假设极端降水事件是独立的,并且分布相同。但是,有多种原因认为事实并非如此。例如,季节性和空间模式以及气候变化可能引起非组织性。第1.6节回顾了各种检测和建模非组织降水极端的方法。最后一节是一个讨论,介绍了随机发生器的概念,并阐述了为模拟目的建模极端降雨的重要性。
Avalon Advanced Materials Inc.(以下简称“公司”或“Avalon”)的管理层讨论与分析(“MDA”)是对公司截至 2022 年 11 月 30 日的三个月(“季度”)的财务业绩的分析。以下信息应与随附的本季度未经审计的简明合并中期财务报表以及截至 2022 年 8 月 31 日的年度合并财务报表和年度信息表一起阅读。本 MDA 于 2023 年 1 月 10 日编制。业务性质和整体表现 Avalon 是一家加拿大矿产开发公司,在加拿大多伦多证券交易所上市,在美国 OTCQB 创业板交易,也在德国法兰克福证券交易所交易。公司寻求通过成为清洁技术关键矿物的多元化、可持续生产商和营销商以及扩大其特种矿产品市场来创造股东价值。 Avalon 主要在加拿大开展业务,拥有多元化的资产基础,使公司能够接触到这些关键矿物的广泛领域,包括锂、稀土元素 (REE)、铯、钽、锡、铟、镓、锗和锆。该公司正处于开发其五种矿产资源中的三种的不同阶段,特别注重锂、铯、钽、锡、铟和稀土。Avalon 继续评估具有近期发展潜力的新机会,例如使用新技术从历史矿山废料中提取关键矿物。这是公司在其东肯普特维尔锡铟项目和安大略省东北部另一个名为 Cargill 的矿场中模拟的机会,在那里有可能从一处已关闭的磷酸盐矿场的尾矿中回收稀土和钪。这一概念吸引了 ESG 投资者和联邦政府越来越多的兴趣,他们现在正在推广“循环经济”,特别是对于废料中含有丰富关键矿物的矿场,但确保进入这些矿场仍然具有挑战性。该公司所有三个先进项目都拥有大量矿产资源和初步经济评估,下一步是确定矿产产品的市场和/或处理大宗样品以展示适当的提取工艺并生产产品样品供客户评估。技术进步可能会突然为某些关键矿物创造新的需求,如果能够迅速做出反应以满足新的需求,就会为新生产商提供机会。一个众所周知的例子是“磁铁稀土”钕和镨(“Nd-Pr”)的需求突然增长,再加上中国控制稀土供应链导致供应短缺的风险。公司已将可持续发展原则作为其业务实践的核心,并坚定承诺实施企业社会责任 (CSR) 最佳实践。2022 年 12 月,公司发布了第 11 份年度综合可持续发展报告(“2022 年可持续发展报告”),并于 2021 年 2 月在 Sustainalytics 的同行公司中获得了前 5% 的 ESG 风险评级。公司还入选了 Benchmark Minerals 的首届全球锂 ESG 排名,位列全球前 5%。公司认为,由于其寻求生产的清洁技术材料产品(尤其是锂、铯、钽、稀土、锆和锡)在包括锂离子电池、电动汽车、电子产品、小型模块化反应堆和航空航天在内的新技术应用中至关重要,因此工业对其寻求生产的清洁技术材料产品(尤其是锂、铯、钽、稀土、锆和锡)的需求正在增长。
质量声明 实验室已获得 ISO/IEC 17025:2017 认证。作为认证计划的一部分,认证机构(加拿大标准委员会)会定期进行监督审核,以验证质量管理体系和经认证的测试方法,审核员需遵守保密协议。 条款和条件 以下条款和条件适用于客户要求的服务,并与分析申请表、钻石服务申请表和保管链表格或保管链表格(如适用)一起成为 SRC 与客户之间的协议(“协议”)。 1. 服务提供:SRC 应根据普遍接受的分析实验室原则和实践,及时、勤勉和专业地提供服务。SRC 应遵守与服务有关的所有适用的联邦、省和市法律。 2. 样品提交:客户应根据 SRC 当前价格指南中规定的准则存储和保存样品。未能遵守 SRC 当前关于样品储存和保存的指导方针可能意味着 SRC 无法提供服务。除非事先做出安排,否则样品必须通过预付快递方式提交给 SRC。所有样品必须附上已填妥并执行的分析申请表、钻石服务申请表和保管链表格或保管链表格(如适用)。未能填写并执行此类表格可能会导致服务延迟。3. 付款条件:客户同意向 SRC 支付客户要求的所有服务的适用费用。可能适用最低服务费。费用如有更改,恕不另行通知。客户将以加拿大资金支付所有发票,不得扣除或抵销。客户应向 SRC 支付的金额应在必要的范围内加总,以便客户向 SRC 支付的净额在扣除预扣税或客户可能需要扣除的其他金额后等于 SRC 在任何此类扣除之前收取的金额。收到发票后应付款。所有发票逾期三十 (30) 个日历日或以上,将按每月 1.5%(每年 18.00%)的利率收取利息。所有适用的联邦和省级税款将自动添加到发票中。除非所有费用均已全额支付,否则 SRC 不得发布测试结果或工作成果。4. 保密性:SRC 应将与服务有关的所有数据、报告和其他信息视为客户的机密财产。本节规定的保密义务不适用于以下任何信息:(i) 法律要求披露;(ii) 在从客户收到之前已由 SRC 持有;(iii) 由 SRC 从第三方合法获得,且对客户不承担保密义务;或 (iv) 并非因 SRC 的行为或过失而属于或成为公共领域的一部分。5. 报告:SRC 向客户提供的有关服务结果的所有报告均为客户的保密财产。SRC 有权保留与服务有关的所有数据和报告的副本,但只要 SRC 保留此类数据或报告的副本,本协议规定的保密义务将继续适用。6. 宣传:除非事先获得 SRC 的书面同意,否则客户不得在任何新闻稿、公开声明或公告中,或在任何物品、产品或公司的销售、出售要约、广告或促销中使用 SRC 的名称、徽标或其他识别标记。 7. 无担保:SRC 对任何事项均不作任何明示、暗示、法定或其他形式的陈述或保证,包括但不限于根据本协议交付的任何商品、服务或产品的质量、适销性或适用于任何用途。测试结果取决于客户提交的样品的质量以及客户是否遵守 SRC 指示的提交程序。客户接受服务结果,并承认使用或解释 SRC 提供的任何报告中包含的信息均由客户自行承担风险。8. 责任限制:在 SRC 接受交付之前,SRC 对客户的样品不承担任何责任。特别是,SRC 对因客户未能正确收集、处理、储存、保存、运输、标记和/或识别提交给 SRC 进行服务的样品而产生的任何后果不承担任何责任。 SRC 的责任应限于根据 SRC 的选择,退还客户为已证明有缺陷的服务支付的金额,或重新提供客户声称有缺陷的服务。在任何情况下,SRC 均不对客户因利润损失、惩罚性赔偿或其他间接或后果性损害承担责任。9. 不可抗力:如果履行因任何超出其合理控制范围的原因(资金匮乏除外)而延迟或受阻,则任何一方均无权免于履行本协议项下的任何义务。10. 终止:任何一方均可提前两 (2) 个日历日以书面形式通知终止本协议,届时,在终止之日前完成的任何服务将到期并应付,以及 SRC 就服务产生的任何其他费用,包括但不限于:为服务而专门购买的任何材料的费用。11. 适用法律和管辖权:本协议应受萨斯喀彻温省法律和加拿大适用法律的管辖和解释,且双方应承认萨斯喀彻温省法院和所有有权受理上诉的法院的专属管辖权。12. 争议解决:如果 SRC 和客户之间发生任何争议,双方应根据《仲裁法》(萨斯喀彻温省)或《国际商事仲裁法》(萨斯喀彻温省)(如适用)在萨斯喀彻温省萨斯卡通通过仲裁解决此类争议。 13. 现场要求:如果客户和/或其员工、代理或代表在 SRC 现场,则客户和/或其员工、代理或代表在 SRC 现场时同意遵守 SRC 的道德规范及其健康和安全政策和程序。如果客户和/或其员工、代理或代表有权访问 SRC 的网络或信息技术资源,则客户和/或其员工、代理或代表同意遵守 SRC 的信息技术政策和程序。14. 样品所有权、存储和归档:客户向 SRC 提供的所有样品仍为客户财产。客户应向 SRC 提供有关样品、废品和纸浆材料的退还、处置或归档的说明。如果客户要求将样品废料或纸浆材料归档、退还或处置,客户应向 SRC 支付适用的归档费用或 SRC 因退还或处置此类样品、废料或纸浆材料而产生的任何费用。除非 SRC 收到客户的其他指示,否则以下规则适用于样品、废料和纸浆材料的归档和处置。a) 除钾肥勘探活动产生的样品外,所有样品将在服务结束后由 SRC 保存两个日历年(“样品存储期”),并收取归档费用。样品存储期后,SRC 可自行决定处理样品。SRC 不会存储钾肥勘探活动产生的样品,此类样品将由 SRC 自行决定处理。b) 铀、金或钾肥废料和纸浆材料将由 SRC 保存至服务结束后的日历年的 1 月(“铀/金/钾肥存储期”),并收取归档费用。在铀/金/钾盐储存期之后,铀、金或钾盐废弃物和矿浆材料可由 SRC 自行处理。c) DMS 尾矿,流动分类尾矿和通过钻石加工回收的任何宝石将由 SRC 无限期储存,并收取存档费用。服务结束后,SRC 将储存苛性残渣两年(“苛性残渣储存期”),并收取存档费用。在苛性残渣储存期之后,SRC 可自行决定处理苛性残渣。d) 上述 (a)、(b) 和 (c) 段中规定的存档费用应在 SRC 提供有关服务结果报告后的三十 (30) 个日历日内适用。
如今,人们越来越多地使用电动汽车来减少碳足迹,并减少了对全球变暖的贡献。这些车辆以电力运行,最大程度地减少污染及其影响。,但是您是否想知道是什么组成了电动汽车?由于技术的进步,汽车行业发生了重大变化,包括配备高级功能和环保技术的电动汽车的出现。许多汽车制造商现在正在发布自己的电动汽车型号,例如Wuling Gsev,它拥有最新的创新。随着电动汽车变得越来越普遍,必须了解其组件及其工作方式至关重要。电动汽车中的主要组件通常包括:1。**牵引电池组**:此组件将直流电(DC)存储给逆变器,从而为牵引电机提供动力。2。**功率逆变器或逆变器**:将直流电流转换为交流电流,它驱动牵引电机,并在再生制动过程中转换为直流电流,以充电电池。3。**控制器**:调节电池组从电池组到逆变器的能量流,它会根据驾驶员输入影响车速。4。**牵引电机**:驱动传输和车轮的关键组件,旋转高达18,000 rpm。每个电动汽车型号都有独特的组件布置,但是这四个是使它们起作用的主要构件。电动汽车的功率来自多个关键组件,包括大多数类型的BLDC电动机,但有些使用冰型牵引电机。充电器是另一个至关重要的部分,将AC电力转换为直流电池组中的存储。它使用车载或板外充电器,并具有各种小费。传输充当电动机的电源调节器,类似于传统的汽车变速器。电动汽车的关键组件是直流转换器,它将高压电池电流降低到其他组件所需的较低电压。这可以使设备平稳运行,并在充电过程中提供稳定的电流和电压。除了主要电源外,辅助电池还为刮水器,空调和警报等配件提供备用电源。热冷却系统调节电动汽车及其组件中的温度,从而防止长时间使用时过热。这些基本零件之一是充电器锅,这是一个有用的功能,可连接外部电源在充电过程中为电池组充电。围绕电动汽车电池材料采购的原始文本,例如来自澳大利亚,智利和中国的锂,来自刚果的钴,涉及劳动力问题,来自印度尼西亚和菲律宾的镍,迅速需要进行可持续的回收实践。这些因素设定了探索创新的阶段,例如回收和替代材料的进步,可以减轻环境问题并提高车辆性能。电池功能依赖于包括电解质在内的各种组件,这些组件可能构成火灾危害。固态电解质提供更安全的替代方案,从而提高了能源效率。有效的BMS可以增强电池的寿命和安全性。斯坦福大学的一项2022年研究表明,固态电池可以彻底改变电动汽车技术。电池管理系统(BMS)监视和管理电池性能,确保安全操作并优化充电周期。电动汽车电池电池主要使用锂离子技术,包括多种材料。阴极材料包括氧化锂,磷酸锂,镍锰钴和镍钴铝,每种含有独特的性能特征。阳极材料由石墨和基于硅的材料组成,前者具有稳定性和电导率。电解质通常是溶解在有机溶剂中的锂盐,而聚乙烯和聚丙烯等分离剂可预防短路。材料的选择会根据性能需求和制造商的喜好而变化,从而影响成本,效率和环境影响。研究表明,固态电解质的进步可以进一步提高安全性和能量密度,并有可能改变电动汽车技术。组成电动汽车电池电池的材料在效率,安全性和性能中起着不同的作用。选择右分离器可以提高电池性能和安全性。导电添加剂通过利用碳黑色和导电聚合物等材料来提高总体电导率,尤其是在缺乏自然电导率的组件中,提高了电导率。这种离子电导率对于能量传递至关重要,并且通过在电池内保持电荷分离来防止短路。电解质通过离子在阳极和阴极之间的移动中促进电流的流动,从而实现了有效的能量存储和释放。它们通常由液体或凝胶状物质组成,这些物质含有在充电和放电过程中在正极和负电极之间移动的离子。此外,电解质有助于热管理,有助于调节电池运行过程中产生的热量。所使用的电解质类型会影响整体寿命,并且可以通过最大程度地减少腐蚀和电极降解来显着改善循环寿命。固态电解质正在探索,以替代传统液体电解质,以增强寿命。导体和分离器在确定电荷流量的效率和防止短路的效率方面起着至关重要的作用,从而影响电池性能。导体促进电子流,增强能量密度以及冲击电荷和放电速率,而分离器则防止短路,保持离子流量并影响整体电池安全。但是,随着锂离子电池对这些车辆的至关重要,预计这将上升。钴的提取主要集中在刚果民主共和国(DRC),约占全球钴生产的70%。矿物质通常是作为该区域铜矿开采的副产品获得的。澳大利亚和俄罗斯也为钴供应做出了贡献,但程度较小。根据国际能源机构的说法,对钴的需求将增加,因为它在锂离子电池中至关重要,预计供应需求可能会超过当前提取率。人权和道德采购问题是与钴采矿有关的重要主题,尤其是在刚果民主共和国。镍提取区包括印度尼西亚,菲律宾,加拿大和澳大利亚。印度尼西亚已成为最大的镍出口商,由其后矿石沉积物驱动。菲律宾以其镍矿而闻名,并且由于环境法规而产生的生产率混杂。加拿大也拥有大量的镍资源,尤其是在安大略省和魁北克省。澳大利亚是全球领导者,硫化物和后矿物的镍产量广泛。截至2021年,全球镍产量超过250万吨,这是由于对电动汽车电池的需求而大大推动的。随着电动汽车市场的扩大,环境可持续性和镍的回收越来越重要。与采购电动汽车电池材料相关的挑战包括环境问题,地缘政治风险,供应链问题和道德采购问题。这些挑战是由电池所需的材料的提取和处理引起的,由于栖息地破坏,缺水和污染而影响干旱地区的当地社区。地缘政治风险是指提供关键电池材料的国家的政治不稳定。钴的很大一部分来自刚果民主共和国,该共和国面临着持续的冲突和治理问题,破坏了供应链并在市场价格中产生波动。这些破坏会阻碍制造商始终如一地生产电动汽车的能力。供应链问题与可能影响材料可用性的破坏有关,这是由自然灾害,政治事件或运输挑战引起的。COVID-19大流行展示了供应链中的漏洞,导致延误和成本增加。随着电动汽车市场的扩大,环境可持续性和镍的回收越来越重要。电动汽车制造商面临着限制市场竞争力的越来越多的需求,而消费者越来越要求在采购实践中透明度,以解决诸如劳动剥削和与钴开采相关的危险工作条件等道德问题。电动汽车电池材料的生产具有重大的环境影响,包括资源提取,能源消耗,产生废物和化学污染。锂,钴和镍的资源提取导致栖息地破坏和生物多样性丧失,如南美锂三角形所见,水耗水会影响当地社区。能源消耗会导致温室气体排放,研究表明每千瓦时生产的每千瓦时高达200千克二氧化碳等效排放。采矿作业产生的废物会产生有毒的尾矿,可污染土壤和水源,而重金属和溶剂的化学污染对人类健康和生态系统构成风险。要应对这些挑战,电动汽车制造商必须优先考虑可持续生产方法,以最大程度地减少环境影响并改善电动汽车的生命周期。如何制作电动汽车电池。锂开采对环境有几种负面影响,包括栖息地破坏,水资源消耗,土壤污染和非本地物种的引入。这些影响可能导致生物多样性和生态系统破坏减少。为了减轻这些问题,通过技术进步,回收计划,可持续采购和监管框架在电池生产中正在努力。在此处,此处的文章推动了可持续的电池生产实践的推动,使政府在全球实施规定,以减少排放和回收目标。欧洲联盟的电池指令旨在通过激励使用可再生材料而在维珍材料上使用可持续的材料来确保电池的可持续设计,生产和回收。研发计划致力于创建创新的电池技术,例如钠离子或固态电池,这有望减少环境破坏的材料提取和加工。新的研究投资正在为更能提高效率和寿命的更具能量的电池铺平道路,从而降低了替代频率。该行业的利益相关者合作,以减轻环境损失,确保电池技术的可持续未来。电动汽车电池材料的新兴趋势集中在高级技术,可持续性和性能改进上。固态电池利用固体电解质,增强安全性和能量密度。锂硫电池提供更高的理论能量密度,可能导致范围更大的较轻的电池。越来越优先考虑回收。回收计划从二手电池中收回有价值的金属,旨在到2040年提供25%的世界锂需求。但是,批评家强调需要有效的法规和基础设施以确保可持续实践。减少对锂之类的关键矿物质的依赖对于可持续的未来至关重要,研究人员正在探索替代材料以实现这一目标。钠离子电池,固态电池,锂硫电池,基于石墨烯的材料和有机电池是正在研究的选择。例如,钠离子电池在取代锂离子技术方面表现出令人鼓舞的结果,以较低的成本提供竞争性能。固态电池利用固体电解质而不是液体电池,从而提高了安全性和能量密度。锂硫电池表现出由于硫的丰度和低成本而导致的高能量。基于石墨烯的材料正在研究其出色的电导率和机械性能。技术的进步有望通过提高电池的寿命和效率来对环境产生积极影响。用碳基材料制成的有机电池提供了一种可环友好的替代品,可以使用可再生资源生产。由马里兰州大学于2020年进行的一项研究表明,有机材料可以创建可持续和具有成本效益的电池。这种方法旨在减少与传统电池组件相关的环境缺陷。研究人员正在探索不同的材料,以提高能量密度,使电池能够在较小的空间中存储更多的电源。固态电池,用固体材料代替液体电解质,提高安全性并延长寿命。有效的回收工艺从旧电池中回收有价值的材料,最大程度地减少了废物并减少对新资源的需求。电池管理系统中的智能算法优化了充电周期,延长电池寿命并防止过热。锂硫和钠离子等新的电池化学分配器提供了更高的能量能力,同时降低了少量少量材料(如钴)。可再生能源整合还通过存储太阳能或风能的多余能量在电池可持续性中起着至关重要的作用。创新材料,增强的回收,高级管理系统,替代化学和可再生能源整合的组合将显着增强电池的可持续性和性能。电池的主要组件是什么。汽车电池内有什么。