摘要:高尿酸血症已成为全球负担,随着相关代谢性疾病和心血管疾病的越来越多的患病率和风险。尿液疗法通过通过肾脏促进尿酸排泄,作为降低尿酸盐的重要疗法。但是,有效且安全的尿液疗法仍在迫切需要在诊所使用。在这项研究中,我们旨在建立体外和体内模型,以帮助发现新型的尿液治疗,并寻找有效的活性化合物,尤其是针对尿酸盐转运蛋白1(URAT1),这是肾脏处理尿酸稳态的主要尿酸盐转运蛋白。结果,对于初步筛选,使用非同位素尿酸摄取测定法在Hurat1稳固表达的HEK293细胞中评估了体外URAT1转运活性。在亚急性高尿症小鼠模型(亚hua)中评估了体内治疗效果,并在慢性高尿症小鼠模型(CH-HUA)中进一步确认。通过利用这些模型,获得化合物CC18002作为有效的URAT1抑制剂,IC 50值为1.69 µm,在亚hua和Ch-Hua小鼠中且降低的尿酸降低效应,与同一剂量的本茨溴酮相当。此外,CC18002处理不会改变黄嘌呤氧化还原酶(关键酶催化尿酸合成)的活性。综上所述,我们开发了一种新颖的筛选系统,包括针对URAT1的细胞模型和两种小鼠模型,以发现新型的尿液治疗。利用该系统,研究了化合物CC18002作为候选URAT1抑制剂治疗高尿酸血症。
摘要简介:动脉粥样硬化引起的冠状动脉疾病和中风是发病率和死亡率的原因,其特征是内皮功能障碍,钙化,动脉阻塞。尽管实施了针对药物治疗和血运重建的优化策略,但仍有重复事件的发生率很高。胰岛素抵抗的特征是胰岛素依赖性器官和组织中的胰岛素敏感性降低,这意味着动脉粥样硬化疾病的高风险。已经提出了甘油三酸酯糖指数来鉴定胰岛素抵抗。高尿酸血症会增加氧化应激,平滑肌细胞增殖和内皮损伤的促炎物质。目的:进行叙事书目审查以评估索引的作用
1。rd和al。呼吸剧加热。2021; 43(3):341-348。 doi:1016/j.htct.2020.06.006 2。他施舍。剧型。2020; 99:1505-1 doi:10.10.1007/s0027-020-0404052-Z 3。in:StatsearchPub-sement; 2023。2023年7月31日访问。m和al。J Manag Sec Pharm2020; 26(12)(柔软B):S8-S15。招募米切尔。SM Clin Med Oncol2017; 1(1):1001。 6。 in:Statsearch Pub-sement; 2023。 2023年7月17日访问。 JL Dotson,Lebowicz Y. in:Statsearch 出版; 2023。 2022年7月18日访问。 n等。 J Clin Med 2021; 10:1026。 doi:10.390/jcm10051026 9。 Brodsky RA。 血液 2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 14。2017; 1(1):1001。6。in:StatsearchPub-sement; 2023。2023年7月17日访问。JL Dotson,Lebowicz Y.in:Statsearch出版; 2023。2022年7月18日访问。n等。J Clin Med 2021; 10:1026。 doi:10.390/jcm10051026 9。 Brodsky RA。 血液 2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 14。J Clin Med2021; 10:1026。 doi:10.390/jcm10051026 9。Brodsky RA。 血液 2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 14。Brodsky RA。血液2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 14。2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。miyata t和al。n Engel J Med。1994; 330:249-211。Bessler M和Al。J.1994; 13(1):110-112。miyata t和al。科学。1993; 259:1318-113。JF和Al。血。14。1992; 79:1400-1403。 J和Al。 单元格。 1993; 73-711。 15。 Wilcox La和Al。 血液 1991; 78(3):820-8 16。 Medof Me,Al。 SCI USA Acad。 1985; 82(9):2980-2 17。 MH等人。 J Clin Invest。 1989; 84:1387-1 18。 Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 Dezern Ae,Brodsky RA。 临床北部呼吸剧。 2015; 29-494。 doi:10.1016/j.ho.2015.01,005 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 208-216。 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。1992; 79:1400-1403。J和Al。单元格。1993; 73-711。 15。 Wilcox La和Al。 血液 1991; 78(3):820-8 16。 Medof Me,Al。 SCI USA Acad。 1985; 82(9):2980-2 17。 MH等人。 J Clin Invest。 1989; 84:1387-1 18。 Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 Dezern Ae,Brodsky RA。 临床北部呼吸剧。 2015; 29-494。 doi:10.1016/j.ho.2015.01,005 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 208-216。 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。1993; 73-711。15。Wilcox La和Al。 血液 1991; 78(3):820-8 16。 Medof Me,Al。 SCI USA Acad。 1985; 82(9):2980-2 17。 MH等人。 J Clin Invest。 1989; 84:1387-1 18。 Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 Dezern Ae,Brodsky RA。 临床北部呼吸剧。 2015; 29-494。 doi:10.1016/j.ho.2015.01,005 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 208-216。 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。Wilcox La和Al。血液1991; 78(3):820-816。Medof Me,Al。 SCI USA Acad。 1985; 82(9):2980-2 17。 MH等人。 J Clin Invest。 1989; 84:1387-1 18。 Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 Dezern Ae,Brodsky RA。 临床北部呼吸剧。 2015; 29-494。 doi:10.1016/j.ho.2015.01,005 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 208-216。 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。Medof Me,Al。SCI USA Acad。 1985; 82(9):2980-2 17。 MH等人。 J Clin Invest。 1989; 84:1387-1 18。 Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 Dezern Ae,Brodsky RA。 临床北部呼吸剧。 2015; 29-494。 doi:10.1016/j.ho.2015.01,005 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 208-216。 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。SCI USA Acad。1985; 82(9):2980-217。MH等人。J Clin Invest。1989; 84:1387-118。Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 Dezern Ae,Brodsky RA。 临床北部呼吸剧。 2015; 29-494。 doi:10.1016/j.ho.2015.01,005 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 208-216。 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。Davies A和Al。J扩展。1989; 170:637-619。m和al。J Spec Pharm Manag。2020; 26(12)(补充B):S3-S820。Dezern Ae,Brodsky RA。临床北部呼吸剧。2015; 29-494。 doi:10.1016/j.ho.2015.01,005 21。Parker CJ。 血液学和SOC雌醇教育 2016; 208-216。 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。Parker CJ。血液学和SOC雌醇教育2016; 208-216。22。illingworth a和al。细胞细胞t。2018; 94-66。 doi:10.1002/cycle.b.21609 23。Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。Southernland Dr and Al。细胞细胞t。2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。肥胖的B和Al。白血病。2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。dingli d和al。剧型。2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。maninal p al。印度J仅呼吸蛇出血。2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。Parker C和Al。血。2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 29。2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。res螺栓。29。2015; 136(2):274-281。 Borowitz MJ等。 细胞仪B临床细胞症。 2010; 78(4):211-230。 doi:10.1002/cyto.b.20525 30。 labcorp。 2023年9月4日访问。https://www.labcorp.com/tests/502251/paroxysmal-nocturnal-hemoglobinuria-pnh 31。 生物。 2023年9月11日访问。https://www.bioreference.com/physicians/resources/test-directory/?type=by_test&test&test&test_id = 5380 32。 任务诊断。 2023年9月12日访问。https://testdirectory.questdiarostics.com/test/test/test-detail/94148/paroxysmal-nocturnal-nocturnal-hemoglobinuria-hemoglobinuria-pnh-pnh-pnh-with-flaer-flaer-flaer-high-high-high-high-high-high-semititive? 新基因学。 2023年9月11日访问。https://neogenomics.com/test-menu/high-sensitivity-pnh-evaluation 34。 CSI实验室。 2023年9月11日访问。https://www.csilaboratories.com/flow/pnh-high-sensitivity/ 35。 告知诊断。 2023年9月11日访问。https://www.informdx.com/our-services/hematopathology/hematology-oncology-oncology-testing/ 36。 Arup实验室。 2023年9月4日访问。https://ltd.aruplab.com/tests/pub/2005006 37。 Dahl-Chase诊断服务。 2023年9月11日访问。https://www.dahlchase.com/ services/pnh-testing.aspx 38。 Dahl-Chase诊断服务。 Accessed September 11, 2023. http://dahlchase.host4kb.com/article/AA-00231/15/ Dahl-Chase-Directory-of-Services/Flow-Cytometry-Testing/Paroxysmal-Nocturnal-Hemoglobinuria-Analysis.html 39. hemagogenix。 访问已访问的Sep-Tember 11,2023。https://hematogenix.com/technologies/flow-cytometry 40。 Mayo诊所实验室。2015; 136(2):274-281。Borowitz MJ等。细胞仪B临床细胞症。2010; 78(4):211-230。 doi:10.1002/cyto.b.20525 30。labcorp。2023年9月4日访问。https://www.labcorp.com/tests/502251/paroxysmal-nocturnal-hemoglobinuria-pnh 31。生物。2023年9月11日访问。https://www.bioreference.com/physicians/resources/test-directory/?type=by_test&test&test&test_id = 5380 32。任务诊断。2023年9月12日访问。https://testdirectory.questdiarostics.com/test/test/test-detail/94148/paroxysmal-nocturnal-nocturnal-hemoglobinuria-hemoglobinuria-pnh-pnh-pnh-with-flaer-flaer-flaer-high-high-high-high-high-high-semititive?新基因学。2023年9月11日访问。https://neogenomics.com/test-menu/high-sensitivity-pnh-evaluation 34。CSI实验室。2023年9月11日访问。https://www.csilaboratories.com/flow/pnh-high-sensitivity/ 35。告知诊断。2023年9月11日访问。https://www.informdx.com/our-services/hematopathology/hematology-oncology-oncology-testing/ 36。Arup实验室。2023年9月4日访问。https://ltd.aruplab.com/tests/pub/2005006 37。Dahl-Chase诊断服务。2023年9月11日访问。https://www.dahlchase.com/ services/pnh-testing.aspx 38。Dahl-Chase诊断服务。Accessed September 11, 2023. http://dahlchase.host4kb.com/article/AA-00231/15/ Dahl-Chase-Directory-of-Services/Flow-Cytometry-Testing/Paroxysmal-Nocturnal-Hemoglobinuria-Analysis.html 39.hemagogenix。访问已访问的Sep-Tember 11,2023。https://hematogenix.com/technologies/flow-cytometry 40。Mayo诊所实验室。Mayo诊所实验室。2023年9月11日访问。https:// www。mayocliniclabs.com/test-catalog/overview/62139#Performance 41。Mayo诊所实验室。 2023年9月11日访问。https://www.mayoclini- clabs。 com/test-catalog/概述/62139#费用和编码42。 分子病理实验室网络。 2023年9月11日访问。https:// www。 mplnet.com/images/uploads/pdfs/pnh_3.pdf 43。 分子病理实验室网络。 2023年9月11日访问。https://www.mplnet.com/ tests/paroxysmal-nocturnal-hemoglobinuria-1 44。 pathgroup。 2023年9月11日访问。https://pathconnect.pathgroup.com/testmenu/#/testin-fo/ue5irq%3D%3d 45。 克利夫兰诊所实验室。 2023年9月11日访问。https://clevelandcliniclabs.com/wp-content/uploads/2021/06/ High-sensitivity-flow-flow-cytometry-for-paroxystry-for-paroxymal-noctmal-nocturnal-nocturnal-nocturnal-hemoglobinuria.pdf 46.pdf 46.pdf 46 .pdf 46。 密歇根州医学实验室。 2023年10月10日访问。https://mlabs.umich.edu/tests/pnh-marker-panel47。 爱荷华大学诊断实验室。 2023年10月10日访问。https://www.healthcare。 uiowa.edu/path_handbook/rhandbook/test1123.html 48。 UF病理实验室。 2023年10月10日。 匹兹堡大学。 2023年10月10日访问。https://www.path.pitt.edu/divisions/section-laboratory-medicine/division-clinical-hematopathology/clinical-flow-cytometry-0。Mayo诊所实验室。2023年9月11日访问。https://www.mayoclini- clabs。com/test-catalog/概述/62139#费用和编码42。分子病理实验室网络。2023年9月11日访问。https:// www。mplnet.com/images/uploads/pdfs/pnh_3.pdf 43。分子病理实验室网络。2023年9月11日访问。https://www.mplnet.com/ tests/paroxysmal-nocturnal-hemoglobinuria-1 44。pathgroup。2023年9月11日访问。https://pathconnect.pathgroup.com/testmenu/#/testin-fo/ue5irq%3D%3d 45。克利夫兰诊所实验室。2023年9月11日访问。https://clevelandcliniclabs.com/wp-content/uploads/2021/06/ High-sensitivity-flow-flow-cytometry-for-paroxystry-for-paroxymal-noctmal-nocturnal-nocturnal-nocturnal-hemoglobinuria.pdf 46.pdf 46.pdf 46 .pdf 46。密歇根州医学实验室。2023年10月10日访问。https://mlabs.umich.edu/tests/pnh-marker-panel47。爱荷华大学诊断实验室。2023年10月10日访问。https://www.healthcare。uiowa.edu/path_handbook/rhandbook/test1123.html 48。UF病理实验室。2023年10月10日。匹兹堡大学。2023年10月10日访问。https://www.path.pitt.edu/divisions/section-laboratory-medicine/division-clinical-hematopathology/clinical-flow-cytometry-0。德克萨斯大学医学分公司。2023年10月10日访问。https://www.utmb.edu/lsg2/home/details?id=1366 51。俄勒冈州健康与科学大学实验室服务。2023年10月10日访问。https://www.ohsu.edu/lab-services/pnh-test-high-sensitivity 52。UW医学实验室医学和病理学。 2023年10月10日访问。https://dlmp.uw.edu/test-guide/view/pnhfloUW医学实验室医学和病理学。2023年10月10日访问。https://dlmp.uw.edu/test-guide/view/pnhflo
抽象背景和目的:冲突结果表明血清尿酸与糖尿病之间存在联系,而先前的研究忽略了血清尿酸连续暴露对糖尿病风险的影响。这项研究旨在表征中年成年人中高尿酸血症轨迹,并考虑肥胖症,血脂症和高血压的作用,研究其对糖尿病风险的潜在影响。方法和结果:该队列包括2013年之前没有糖尿病的9192名参与者。通过潜在类增长模型确定了2009年E 2013年期间的高尿素轨迹。2014年E 2018年的入射糖尿病被用作结果。 修改的泊松式恢复模型用于评估轨迹与糖尿病的关联。 此外,还使用结构模型来估计高尿素轨迹和糖尿病之间关系的中介作用。 我们确定了三个离散的高尿素轨迹:高增长(N Z 5794),中等稳定(N Z 2049)和低稳态(N Z 1349)。 在5年的随访中,我们记录了379例事件糖尿病病例。 与低稳定模式相比,高增长模式患糖尿病的风险更高(RR,1.42; 95%CI:1.09 E 1.84)。 此外,由肥胖,血脂异常和高血压介导的高增加的高胸膜模式和糖尿病之间的总效应百分比为24.41%,18.26%和6.29%。 但是,中等稳定的模式与糖尿病风险增加无关。2014年E 2018年的入射糖尿病被用作结果。修改的泊松式恢复模型用于评估轨迹与糖尿病的关联。此外,还使用结构模型来估计高尿素轨迹和糖尿病之间关系的中介作用。我们确定了三个离散的高尿素轨迹:高增长(N Z 5794),中等稳定(N Z 2049)和低稳态(N Z 1349)。在5年的随访中,我们记录了379例事件糖尿病病例。与低稳定模式相比,高增长模式患糖尿病的风险更高(RR,1.42; 95%CI:1.09 E 1.84)。此外,由肥胖,血脂异常和高血压介导的高增加的高胸膜模式和糖尿病之间的总效应百分比为24.41%,18.26%和6.29%。但是,中等稳定的模式与糖尿病风险增加无关。结论:这些结果表明,高炎的高尿素轨迹与糖尿病的风险增加显着相关。此外,肥胖症,血脂异常和质感在高炎性高尿素模式与糖尿病风险增加之间的关系中扮演着介导的作用。
Alessandro Maloberti 1.2·Alessandro Mengozzi 3,4·Elisa Russo 5·Arrigo Giuseppe Cicero 6.7·Fabio Angeli 8.9·Enrico Agabiti Rosei 10·Carlo Maria Barbagallo 11·Bruno Bernotino caseig bruno Bernardino 12·Michele Bombelli ·Rosario Cianci 15 Ciccarelli 16·Massimo Cirillo 17·Pietro Cirillo 18·Giovambattista desideri 12·Lanfranco d'Elia 19·Raffaella dell'oro 2.20·rita facchetti Accarino 21·Luciano Lippa 22·Francesca Mallamaci。 23·Stefano Masi 3·Maria Masulli 16·Alberto Mazza 24·Maria Lorenza Muiesan 10·Pietro Nazzaro 25·Gianfranco Parati 2.26·Paolo Paolo Palatini14。 2.20·Marcello Rattazzi 14·Gianpaolo Rebudi 28·朱利叶Rivasi 29·Massimo Salvetti 10·Valerie Tikharonoff 14·Giuliano tocci 30.31·Andrea Ungar 29·Paolo Paolo Verdecchia 32·Francesca Viazzi 5·Massimo Volpe 30.33·agostino virdis podio themioc braudiob birdis oder od oder oder oder oder oder ofer odrio claudio意大利人的界限风险高血压(SIIA)
简介:alpinetin是中药的生物活性组成部分。这种化合物是Al-Pinia katsumadai Hayata种子的主要成分之一,是类黄酮的成员,具有抗激素,抗菌和其他重要的进口抗性疗法和低系统性毒性的抗炎,抗菌和其他重要的治疗活性。材料和方法:在我们的研究中,Iniquiritigen-IN对HMG-COA还原酶的抑制作用显示出较低的IC 50 = 21.86±1.44 µg/ ml。进行了一项分子对接研究,作为一项互补研究,以提供有关在尿素酶的情况下氨基甲酸蛋白酶生物学活性的其他数据。对接计算表明,对接得分为–5.097(kcal/mol)的阿替汀具有与酶的可接受的结合亲和力,并且由于该化合物产生的各种疏水接触和氢键,因此可以将alpinetin视为尿布的抑制剂抑制剂。结果:在研究的细胞和分子部分中,通过3-(4,5-二甲基噻唑-2-基-2-基)评估了用氨基甲酸治疗的细胞-2,5-二甲基-2H-2H-2H-四唑双唑胺(MTT)分析48 h,因为细胞毒性和抗脉络膜脉络膜脉络膜脉络膜脉络膜脉络膜脉络脉络脉络脉络脉络脉络脉络脉络脉络脉络脉络脉络脉络脉络膜脉络膜脉络膜均为脉络膜均高(抗蛋白酶)均为敏感性均为敏感性均高(抗蛋白酶)均为敏感性较高4(MT))内皮细胞(HUVECS))和胃癌细胞系,即SNU-1,HS 746T和KATO III。针对SNU-1,HS 746T和KATO III细胞系,Alpinetin的IC 50值分别为426、586和424 µg/mL。在存在阿替肽的情况下,恶性胃细胞系的生存力依赖性降低剂量。结论:研究分子的抗人胃癌作用似乎是由于其抗氧化作用。
3D Plus是通过我们独特的3D垂直互连技术小型化的高级高密度辐射耐受组件的世界领先的供应商。在太空中拥有超过200,000个模块,并且没有报告失败的25年以上的飞行遗产,我们为所有类型的应用提供了全球空间行业:电信,地球观察,导航,发射和载人太空车辆,科学任务和恒星。
冰层积聚是一种普遍存在的自然现象,对广泛的社会系统产生了严重而灾难性的影响。以前对防/除冰技术的研究主要集中在温和的实验室条件下,由于使用寿命短,实际适用性有限。因此,迫切需要开发能够承受复杂环境条件的耐用防/除冰技术。在这项研究中,我们成功配制了一种基于石墨烯的疏水涂层。为了规避与环境不友好的有机溶剂相关的挑战,我们使用石墨烯水浆作为基础材料,随后加入聚乙烯醇-水溶液。将所得溶液进行硅氧烷脲交联聚合物的原位聚合,得到所需的涂层溶液。经过溶液喷涂和干燥过程后,最终获得的产品是疏水导电石墨烯 (HCG) 硅氧烷涂层。 HCG硅氧烷涂层的电导率为66 S/m,仅需10秒即可融化冰滴,而传统涂层则需要20至500秒才能完成相同任务。在芬兰北极圈内的一座高山上进行了整个冬季的综合现场测试,结果表明,该涂层在约310 W/m 2 的功率下具有出色的防冰性能。此外,该涂层在约570 W/m 2 的功率下表现出令人满意的除冰性能,可在约10分钟内成功清除积冰。在整个现场测试过程中,温度经常骤降到20℃,同时风速高达12米/秒。材料特性表明,涂层表面的微纳米结构产生良好的疏水行为,这主要归因于亲水和疏水相互作用引起的相分离。此外,聚乙烯醇分子链和原位聚合硅氧烷脲形成的半互穿结构确保了涂层的强度。© 2023 越南国立大学,河内。由 Elsevier BV 出版这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
摘要。ZnO 纳米粒子 (NPs) 用于光学、电子、传感、激光、光催化装置等。这些应用不仅依赖于形貌,还依赖于尺寸,可通过表面导向剂进行定制。在本研究中,我们研究了 4 个带有尿素/硫脲基团的三足配体(即 1、2、3 和 4)对表面改性 ZnO NPs(即 1Z、2Z、3Z 和 4Z)形貌的影响,这些配体分别在室温(30-40 C)碱性条件下合成。配体用于在室温下获得具有各种形貌的表面改性 ZnO。 1Z、2Z、3Z 和 4Z 分别观察到延伸的六边形纳米棒(* 2-3 微米长度和 * 400 纳米宽度)、层状(薄片自组装形成层状结构)、多分散盘状[微米级(2-3 微米)和纳米级(300-400 纳米)颗粒和纳米棒(1-1.5 微米长度和 130-165 纳米宽度)状形态。1Z 纳米棒具有尖端,而 4Z 纳米棒具有半圆形端部。已经通过罗丹明 B 染料降解评估了这些表面改性 ZnO NP 的光催化研究。